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Project Overview

• Project Objectives:
– Data quality assessment will flag and recover bad 

data using tensor completion techniques.

– Classify event signatures and detect system wide 
events.

• Technical Approach:
– Tensor analytics-based PMU data completion 

approach by utilizing both spatial and temporal 
correlation of PMU data.

– Machine learning based robust event classification.

Overview of key functionalities of 
the robust event diagnostics 

platform.

• Significance & Impact:
– By integrating Tensor Analytics and Machine Learning, this project will provide 

innovative tools for PMU data management, which can assist grid operators to better 
assess the state of the system and contribute to the efficient, safe, reliable operation 
and design of the electric system.



Technical Accomplishments

• Specific goals/objectives reached

– Data Quality Assessment and Completion

• We performed data quality assessment on the PMU datasets.

• We developed an algorithm for unwrapping angles in presence of missing data. 

• We developed the regularized tensor completion method. 

– Robust Event Diagnostics

• We developed an event detection method based on low rank property of PMU data and did 

the event detection experiments for the entire IC-B dataset.

• We performed comprehensive data exploration and preprocessing on PMU datasets.

• We developed machine learning based event classification models.



Outline of Technical Approaches 
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Experimental Results
--Data Quality Assessment (1)
• Not all PMUs report data for every day and Not all PMUs report all 

measurements.

• Low SNR for some PMUs

Low Data Availability 

Signal availability in 60 fps PMUs for IC-BPMU availability for IC-C
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Experimental Results
--Data Quality Assessment (2)
• Data Cleaning Process



Experimental Results
--Missing Data Completion (1)
• Regularized Low Rank Tensor Completion (LRTC) for PMU Data

• Validation Results
– Missing randomly

– Multiple channel missing
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Experimental Results
--Missing Data Completion (2)
• Validation Results: 

– The measurements are from interconnect B, and 23 PMUs during a line outage fault for 5s with sampling rate 
of 60 samples per second. 

• Our method outperforms all the other methods in terms of accuracy.

Missing randomly Multiple channel missing

• Tensor based methods are capable of recovering the missing values for consecutive missing entries.

A. Ghasemkhani, I. Niazazari, Y. Liu, H. Livani, V. A. Centeno and L. Yang, "A Regularized Tensor Completion 
Approach for PMU Data Recovery," in IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2020.3030566.



Experimental Results
--Event Classification (1)

• Event detection based on the change of singular 
values

– Ratio of the largest 𝜎1 and second largest 𝜎2 singular values of 
PMU matrices

– Change of this ratio from time 𝒕 to time 𝒌

– Events are detected if 𝜉𝑡,𝑘> threshold.

– Bayesian optimization-based threshold tuning

• 98% detection accuracy on IC-B dataset with 
4854 events

𝜂𝑡 =
𝜎2
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Experimental Results
--Event Classification (2)

• Event classification
– Feature Engineering: construct features for different types of 

events.

– Hybrid event classification model.

– Validation results: 

• 98% accuracy for frequency events

• 91% accuracy for all events, compared to 83% using CNN trained with 
original PMU measurements.

• Improve interpretability of data-driven models for 
power system event classification.

Frequency events



Value of Work

• Benefits for the utilities
– Utilities can use our methods to enhance the quality of the collected PMU data, 

detect and classify events in real time, which can assist grid operators to better 
assess the state of the system and contribute to the efficient, safe, reliable 
operation and design of the electric system.

– High-value use cases for the tools

• Missing data completion

• Event detection

• Event classification

• Benefits of sharing data from multiple utilities 
– Establish data collection standards

• How to store the PMU data to facilitate ML and BD analytics 

• How to prepare the event logs: The event logs from multiple utilities are of different 
quality in terms of event descriptions.

• It is worthwhile for utilities to share anonymized data. 
– The limitation of anonymized data is that it may limit the performance of the 

developed methods (e.g., event classification).



Readiness for Commercialization

• Readiness number of the product developed in this project (0 being 
fundamental early-stage research and 10 being commercially viable 
for sale as a working product)

– Missing data completion: 5

– Event detection: 6

– Event classification: 5

• Next steps

– Submit white papers for follow-up work with utilities to make the 
results from the projects available to use and transition our 
research to tools for utilities.



Being Ready for ML & BD Analytics (1)

• Off-the-shelf machine learning models cannot achieve good performance for 
PMU data analytics.

• Key challenges of AI/ML methods and possible solutions

– Challenge 1: Missing data (consecutive missing data)
• Solution: Regularized Tensor Completion for PMU Data by utilizing both spatial and temporal correlation of 

PMU data

– Challenge 2: Inaccurate timestamps of event logs
• Solution: Fine-grained Event Data Extraction based on Event Detection using low rank property of PMU data

– Challenge 3: What features to extract?
• Solution: Feature engineering: Different features for different events (e.g., ROCOF for frequency events) 

– Challenge 4: Unbalanced training data
• For example, in IC-B, we have 4854 events, where the number of line outage events is about 75% in the 

event logs and the number of oscillation events is about 100. You will see overfitting when applying off-the-
shelf machine learning models. 

• Solution: Sampling methods and data augmentation

– Challenge 5: Need additional information
• Event Information: The line events and transformer events are similar, which are difficult to classify. We may 

need to know more information for these events in order to separate these events.

• Topology information

• Information of PMU measurements, e.g., specific current phase sequence 



Being Ready for ML & BD Analytics (2)

• Recommendations for PMU data collection and event logs. 
– Establish data collection standards and add more descriptions of events in the 

event logs, to help the development of ML models.

• E.g., the oscillation modes of oscillation events in IC-B are not given.

– Improve the timestamps of the events in the event logs.

– Provide more information of the systems

• It is important to synergistically combine machine learning models 
with power systems domain knowledge.

– Our methods combine machine learning models with domain knowledge to 
improve the performance.

• Recommended low-cost steps for utilities to use big data analytics 2 
or 3 years from now.

– Establish data collection standards and improve the quality of event logs.

– Study the feasibility of applying the tools developed in FOA 1861 projects in real 
system.



Lessons Learned and Next Steps
• Recommendations for using the FOA 1861 dataset

– Improve the event logs for future use

• Distinguish significant threats from the common disturbances that 
happen every day

– Our detection algorithm outputs high values for significant threats, compared to 
low values for common disturbances.

– Score based classification to distinguish significant threats from common 
disturbances. 

• Improve interpretability of data-driven models for power system 
event detection and classification

– Use power system’s domain knowledge to create features for event detection and 
classification

• Next steps for ML & BD analytics 
– Automated data labeling

– Adversarial machine learning subject to data privacy and security
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