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Project Overview/Background
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Experimental Results
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Experimental Results
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Technical Accomplishments

v" Findings
v' Data quality
v Patterns
v' Events
Pre-processing
Physics-based Features
v' Admittance matrix-based
v Oscillation
v' Topology (PMU clustering)
v Labeling for ML training
v Categories definition
v UL-based scalable label definition
v' DSSL model
v Investigation of GAN and AE-based models
v Training of final models for multiple event types
Deployment to industrial cloud environment (MindSphere)
Paper publications / Panel participations
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Value of Work

e Benefit to the utilities: situational awareness
— Online information that would require hours of analysis from SME
— Info for acting in response to events to minimize their consequences
— Long term: integration into protection and control

* Tools developed in the project provide:

— Identification of specific types of power grid events for each PMU
individually (focus on real-world use)

— Scalable data labeling: enable utilities to define their requirements
* Dataset

— Broad applicability and validation can only happen because of data
shared from multiple utilities.

— Anonymized data provides big challenges for integrating data from
multiple PMUs but not a big issue for individual PMU analysis.

— Many opportunities for improvement, especially on labels (golden
dataset)
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Readiness for Commercialization

* Next step: work in partnership with utilities

— Work is currently in TRL 6
— Need to integrate utility specific requirements

e Labels
e Performance metrics
e |Integration with existing tools

— Pilot project (< 1 year duration)
e Refining and validating models in partnership with utilities
e Use historical data from utilities or from FOA 1861
e |ntegration to relevant tools

e Online monitoring once performance and integration goals
are achieved
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Being Ready for ML & BD Analytics

e SOTA in ML not an important limitation for PMU data analytics

— Performance can potentially be improved , for instance, by integrating physics

* Relevant challenges/limitations:
— Adequate labels ©: validated and associated to clear data patterns
— Data quality
— Topology / location for system level and improved local awareness

* QOpportunities
— Golden datasets
— Standardization/Best practices

e event categories

e pre-processing best practices to overcome data quality issues
— Topology: maybe it is possible to share an adjacency matrix for a subset of PMUs?
— Utilities working together with vendors, academia/labs:

¢ Include requirements and guide effort to solution of most relevant problems

e Familiarize with potential and limitation

e Define best way to integrate to operation

e Demonstrate the technologies in real world
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Lessons Learned and Next Steps

* Importance of adequate labels ©©
— Golden datasets would unleash a diversity of opportunities

— Analogous to and other repos for the (very
successful) image analytics field

— Currently, even if we have perfect models they may not be useful
as they may not be solving the right problem

Data quality is a big challenge, very relevant for results

Adding physics can help, also topology (even if simplified)
Next steps — suggested roadmap for the industry

(Preliminary) Creation of
definition of golden
categories datasets
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Integration of Integration
operation into protection
requirements and control

“Kaggle” like

competitions
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Publications

 B.P.Leao et al. “Big Data Processing for Power Grid Event
Detection”, IEEE Big Data 2020

* Y. Du et al. “Physics-Based Feature Extraction from Bulk
Time-Series PMU Datasets for Event Detection”, IEEE PES
GM 2021 (Best Paper)

 T.Llan etal. “Unsupervised Power System Event Detection
and Classification Using Unlabeled PMU Data”, IEEE ISGT
Europe 2021 (Submitted)

* Additional papers in preparation
* Panel participations:

— NASPI Work Group Virtual Meeting
— |EEE SGSMA 2021

— PES GM 2021
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