FOA 1861 FINAL PROJECT BRIEFING BIG DATA ANALYSIS OF SYNCHROPHASOR DATA

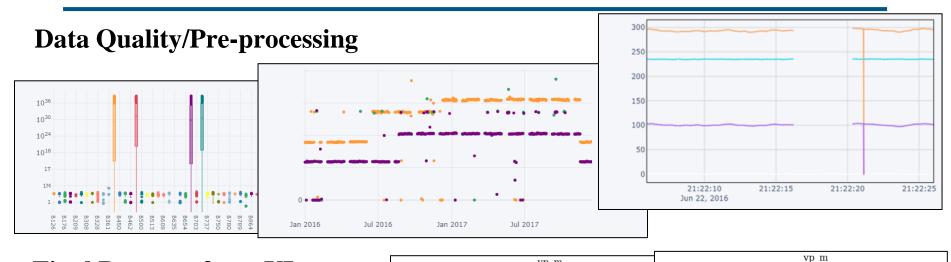
MindSynchro

Bruno Leao

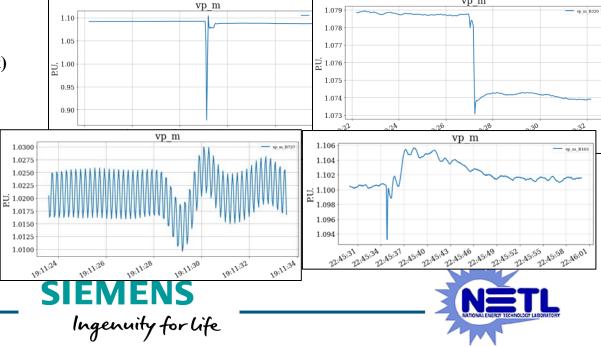
Siemens Technology bruno.leao@siemens.com July 28, 2021


Project Partners: Siemens Digital Grid, Siemens Process Automation, Southern Methodist University, Temple University

Project Overview/Background



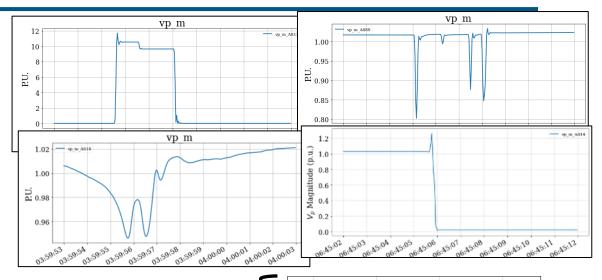
Experimental Results


Final Patterns from UL

- Line trip (direct/indirect)
- Short circuit (direct/indirect)
- Auto-reclosure
- Loss of generation
- Load disconnection
- Sustained oscillation
- Damped oscillation
- Transient

Unknown

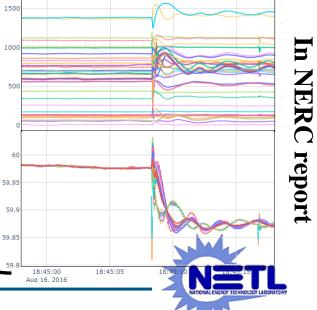
- Noise
- Normal



Experimental Results

Event Identification

Test Dataset	Number of events detected (UL general)	
Texas IC (A)	3,661	
Western IC (B)	2,583	
Eastern IC (C)	9,476	



DSSL Model Results

Model	#Labeled (P/N)	Accuracy	Precision	Recall	FAR
Short circuit (SC)	1878 / 296898	99.83%	94.46%	77.13%	0.03%
SC with features	1983 / 284876	99.87%	96.28%	84.63%	0.02%
Trip no short circuit	6258 / 271117	99.12%	88.03%	71.09%	0.22%
Loss of generation	11226 / 302824	>99.99%	99.87%	99.96%	0.005%

SIEMENS

Ingenuity for life

Technical Accomplishments

- ✓ Findings
 - ✓ Data quality
 - ✓ Patterns
 - ✓ Events
- ✓ Pre-processing
- ✓ Physics-based Features
 - ✓ Admittance matrix-based
 - ✓ Oscillation
 - ✓ Topology (PMU clustering)
- ✓ Labeling for ML training
 - ✓ Categories definition
 - ✓ UL-based scalable label definition
- ✓ DSSL model
 - ✓ Investigation of GAN and AE-based models
 - ✓ Training of final models for multiple event types
- ✓ Deployment to industrial cloud environment (MindSphere)
- Paper publications / Panel participations

Value of Work

- Benefit to the utilities: situational awareness
 - Online information that would require hours of analysis from SME
 - Info for acting in response to events to minimize their consequences
 - Long term: integration into protection and control
- Tools developed in the project provide:
 - Identification of specific types of **power grid events** for each PMU individually (focus on real-world use)
 - Scalable data labeling: enable utilities to define their requirements
- Dataset
 - Broad applicability and validation can only happen because of data shared from multiple utilities.
 - Anonymized data provides big challenges for integrating data from multiple PMUs but not a big issue for individual PMU analysis.
 - Many opportunities for improvement, especially on labels (golden dataset)

Readiness for Commercialization

- Next step: work in **partnership with utilities**
 - Work is currently in TRL 6
 - Need to integrate utility specific requirements
 - Labels
 - Performance metrics
 - Integration with existing tools
 - Pilot project (< 1 year duration)
 - Refining and validating models in partnership with utilities
 - Use historical data from utilities or from FOA 1861
 - Integration to relevant tools
 - Online monitoring once performance and integration goals are achieved

Being Ready for ML & BD Analytics

- SOTA in ML not an important limitation for PMU data analytics
 - Performance can potentially be improved , for instance, by integrating physics
- Relevant challenges/limitations:
 - Adequate labels ☺: validated and associated to clear data patterns
 - Data quality
 - Topology / location for system level and improved local awareness
- Opportunities
 - Golden datasets
 - Standardization/Best practices
 - event categories
 - pre-processing best practices to overcome data quality issues
 - Topology: maybe it is possible to share an adjacency matrix for a subset of PMUs?
 - Utilities working together with vendors, academia/labs:
 - Include requirements and guide effort to solution of most relevant problems
 - Familiarize with potential and limitation
 - Define best way to integrate to operation
 - Demonstrate the technologies in real world

Lessons Learned and Next Steps

- Importance of adequate labels ©©
 - Golden datasets would unleash a diversity of opportunities
 - Analogous to <u>https://image-net.org</u> and other repos for the (very successful) image analytics field
 - Currently, even if we have perfect models they may not be useful as they may **not be solving the right problem**
- Data quality is a big challenge, very relevant for results
- Adding **physics** can help, also **topology** (even if simplified)
- Next steps suggested **roadmap** for the industry

Publications

- B. P. Leao et al. "Big Data Processing for Power Grid Event Detection", IEEE Big Data 2020
- Y. Du et al. "Physics-Based Feature Extraction from Bulk Time-Series PMU Datasets for Event Detection", IEEE PES GM 2021 (Best Paper)
- T. Lan et al. "Unsupervised Power System Event Detection and Classification Using Unlabeled PMU Data", IEEE ISGT Europe 2021 (Submitted)
- Additional papers in preparation
- Panel participations:
 - NASPI Work Group Virtual Meeting
 - IEEE SGSMA 2021

– PES GM 2021

