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Project Overview/Background

 Research Objectives
— Pre-process PMU data and mitigate data anomalies

— ldentify explainable power system event features

— ldentify precursor conditions

— Develop resilient machine learning tools and event
detection methods

* Use power engineering tools such as
SynchroWave Event Detector to aid in analysis
and characterization

* Contrast deep learning with feature engineering
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Experimental Results

e Data handling formed a large portion of our efforts

* Interconnect B had the highest quality data, followed by
Interconnect C, then Interconnect A

* QOur PCA-based anomaly mitigation technique was
successful in correcting GPS-spoofed PMU data

 We developed multiple approaches for event detection
using techniques such as Critical Slowing Down (CSD),
spectral signatures and many others

 The adaptation and application of a causal inference
algorithm is effective for event time localization
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Experimental Results
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Simple imputation methods (linear regression) can be
effective

Deep-learning and feature-engineering based detectors
performed similarly, however:
* Feature-engineering based detectors performed more predictably
* Deep-learning based detectors were more flexible
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2-dimensional visualizations of event tensors
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Technical Accomplishments

* Developed and validated an effective data
anomaly mitigation technique that can be used
for real-time data correction of spoofed data
streams

* Unsupervised event detector based on extraction
of spectral signatures from the PMU data

e Feature extraction methods that can be used to
improve the performance of various neural
network classifier architectures
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Technical Accomplishments

* Modular software pipeline for analyzing and performing event
detection on any PMU dataset

* High performance storage and retrieval system for PMU data

e System for detecting and removing bad data

e System for statistically analyzing an interconnect and flagging
problematic PMUs

e System for repairing bad PMU data

e System for calculating informed event features

* Labeling system

* Event detector implementing three classifier systems side-by-side

— SynchroWave Event Detector

— Feature Engineered Random Forests

— Convolutional Neural Networks
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Event Detector Pipeline
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Value of Work

* A software platform to accelerate future research
— Working with large datasets
— ldentify, filter, and repair bad data
— Generalizable event detection algorithms

— Rapid research iterations and improvements to modules
* Tools to protect against spoofed measurements
* An analytics platform to help operators identify anomalies

 Though anonymized data can be limiting when applying
power engineering techniques, there is still plenty of
research opportunity with the datasets we have
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Readiness for Commercialization

e Qur research was performed with SEL SynchroWave
Operations in mind—modular software

e Qur current pipeline is at an 8/10 readiness level to be
implemented as an operational system for event
detection

— Detect anomalies
— Suggest the type of event

 SynchroWave Operations is a perfect
channel to transition this research to
the field, even on a beta-test basis

SEL-5702 Synchrowave Operations
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Being Ready for ML & BD Analytics

* Feature engineered techniques were more reliable, but deep learning
technigues were more flexible

 Power engineering knowledge helped make up for lack of good quality
labeled data

e Key challenges

— Handling of bad data was the biggest stumbling block when applying ML
methods to PMU data

— Lack of topological data prevented use of classical techniques to flag bad
data and repair it
* Keyimprovements to data

— Utilities should be proactive about identifying and remedying PMU data
issues

— We recommend attempting to improve the accuracy of event log
timestamps and physical location information
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Lessons Learned

e A substantial amount of time was needed to
manage data.

* While initially time consuming, approaching data
science from a software engineering perspective
can accelerate later research.

e The FOA 1861 dataset is still a useful research
tool as is.

e Differentiating between statistically anomalous
events, bad data, and physically meaningful
events can be challenging
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Next Steps

A wealth of research is needed to still address:
— Event localization
— Improved classification methods and imputation models

* QOur efforts focused on physics-informed modeling. Future
efforts could focus on physics-enabled modeling.

— Challenging to contrast machine learning methods against power
engineering without a physical model

 Combining modeling and/or topological details would
help us interpret ML/Al results better

e QOur toolchain could be used as an online or offline
analytics tool for operators, and there is still plenty of
opportunity to implement additional functionality
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