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Project Overview/Background

• Research Objectives

– Pre-process PMU data and mitigate data anomalies

– Identify explainable power system event features

– Identify precursor conditions

– Develop resilient machine learning tools and event 
detection methods

• Use power engineering tools such as 
SynchroWave Event Detector to aid in analysis 
and characterization

• Contrast deep learning with feature engineering



Experimental Results

• Data handling formed a large portion of our efforts

• Interconnect B had the highest quality data, followed by 
Interconnect C, then Interconnect A

• Our PCA-based anomaly mitigation technique was 
successful in correcting GPS-spoofed PMU data

• We developed multiple approaches for event detection 
using techniques such as Critical Slowing Down (CSD), 
spectral signatures and many others

• The adaptation and application of a causal inference 
algorithm is effective for event time localization



Experimental Results

• Simple imputation methods (linear regression) can be 
effective

• Deep-learning and feature-engineering based detectors 
performed similarly, however:
• Feature-engineering based detectors performed more predictably

• Deep-learning based detectors were more flexible

2-dimensional visualizations of event tensors



Technical Accomplishments

• Developed and validated an effective data 
anomaly mitigation technique that can be used 
for real-time data correction of spoofed data 
streams

• Unsupervised event detector based on extraction 
of spectral signatures from the PMU data

• Feature extraction methods that can be used to 
improve the performance of various neural 
network classifier architectures



Technical Accomplishments

• Modular software pipeline for analyzing and performing event 
detection on any PMU dataset

• High performance storage and retrieval system for PMU data

• System for detecting and removing bad data

• System for statistically analyzing an interconnect and flagging 
problematic PMUs

• System for repairing bad PMU data

• System for calculating informed event features

• Labeling system

• Event detector implementing three classifier systems side-by-side
– SynchroWave Event Detector

– Feature Engineered Random Forests

– Convolutional Neural Networks
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Value of Work

• A software platform to accelerate future research
– Working with large datasets

– Identify, filter, and repair bad data

– Generalizable event detection algorithms

– Rapid research iterations and improvements to modules

• Tools to protect against spoofed measurements

• An analytics platform to help operators identify anomalies

• Though anonymized data can be limiting when applying 
power engineering techniques, there is still plenty of 
research opportunity with the datasets we have



Readiness for Commercialization

• Our research was performed with SEL SynchroWave 
Operations in mind—modular software

• Our current pipeline is at an 8/10 readiness level to be 
implemented as an operational system for event 
detection
– Detect anomalies

– Suggest the type of event

• SynchroWave Operations is a perfect 
channel to transition this research to 
the field, even on a beta-test basis

SEL-5702 Synchrowave Operations



Being Ready for ML & BD Analytics

• Feature engineered techniques were more reliable, but deep learning 
techniques were more flexible

• Power engineering knowledge helped make up for lack of good quality 
labeled data

• Key challenges

– Handling of bad data was the biggest stumbling block when applying ML 
methods to PMU data

– Lack of topological data prevented use of classical techniques to flag bad 
data and repair it

• Key improvements to data

– Utilities should be proactive about identifying and remedying PMU data 
issues

– We recommend attempting to improve the accuracy of event log 
timestamps and physical location information



Lessons Learned

• A substantial amount of time was needed to 
manage data.

• While initially time consuming, approaching data 
science from a software engineering perspective 
can accelerate later research.

• The FOA 1861 dataset is still a useful research 
tool as is.

• Differentiating between statistically anomalous 
events, bad data, and physically meaningful 
events can be challenging



Next Steps

• A wealth of research is needed to still address:
– Event localization

– Improved classification methods and imputation models

• Our efforts focused on physics-informed modeling. Future 
efforts could focus on physics-enabled modeling.
– Challenging to contrast machine learning methods against power 

engineering without a physical model

• Combining modeling and/or topological details would 
help us interpret ML/AI results better

• Our toolchain could be used as an online or offline 
analytics tool for operators, and there is still plenty of
opportunity to implement additional functionality



Publications

• A. Lassetter, E. Cotilla-Sanchez, and J. Kim, “Using Critical Slowing Down 

Features to Enhance Performance of Artificial Neural Networks for Time-

Domain Power System Data”, accepted for presentation at International 

Conference on Smart Energy Grid Engineering, 2021.

• S. De Silva, J. Kim, and E. Cotilla-Sanchez, “Data Driven Sparse Error 

Correction for PMU Measurements under GPS Spoofing Attacks”, IEEE 

PES Conference on Innovative Smart Grid Technologies (ISGT), pp. 1–5, 

February 2021.

• D. Senaratne, J. Kim, and E. Cotilla-Sanchez, “Spatio-Temporal 

Frequency Domain Analysis of PMU Data for Unsupervised Event 

Detection”, IEEE PES Conference on Innovative Smart Grid Technologies 

(ISGT), pp. 1–5, February 2021.



Thank You!


