

IEEE PES-TR74 Report Overview

Yi Hu, Quanta Technology Ken Martin, Electric Power Group

April 15, 2021 NASPI Meeting

Presentation Agenda

IEEE Power & Energy Society TECHNICAL REPORT January 2020 PES-TR-74 IEEE **Recommended Mapping Approach** Between IEEE Std C37.118.2[™]-2011 and IEC 61850 Power System Communications and Cybersecurity Committee Protocols and Communication Architecture Subcommittee © IEEE 2020 The Institute of Electrical and Electronics Engineers, Inc. cation may be reproduced in any form. In an electronic retri

Source: https://resourcecenter.ieee-pes.org/publications/technical-reports/PES_TP_TR74_PSCC_012020.html

Phasor Measurement System

IEEE Synchrophasor Standards

- IEEE1344-1995, first standard
 - Focus on sampling & timing
- IEEE C37.118 2005, second standard
 - Measurement requirements--
 - Test method & error limits specified
 - Steady-state phasor only
 - Data transmission format--
 - Comprehensive status and error indications
 - Allows transmitting data aggregated from multiple PMUs
 - Adaptable for network communication

22 March 2008

Synchrophasor System Growth

- Large growth in phasor measurements after 2003 blackout in N. America & others around world
 - IEEE & IEC interested in harmonization of standards for synchrophasor applications
- IEC considered adoption of C37.118
 - C37.118 includes measurements and communications
 - IEC separates communication and measurement into separate technical committees and thereby has separate standards
 - Therefore adoption or direct harmonization were not possible
- In 2008 IEEE split C37.118-2005 split into two standards to facilitate joint development or adoption

IEEE Synchrophasor Standard Changes

- IEEE C37.118-2005 split into 2 standards:
- C37.118.1 2011 (& 2014 amendment)
 - Measurements only
 - Dynamic operation qualifications added
 - Frequency & ROCOF included in qualification tests
- C37.118.2 2011
 - Preserved existing data exchange
 - Added needed improvements (flags & configuration)
- Note: C37.118.1 is now superseded by IEC/IEEE 60255-118-1

IEC Synchrophasor Communication

- WG10 (IEC TC57) developed TR 61850-90-5
 - Based on use cases of established synchrophasor uses and applications
 - Changes included --
 - –Routable mapping of SV
 - -New models for logical node & PDC function
 - -New A & T profiles
 - -New data classes & object types
 - -Advanced security features
- Completed October 2011, published May 2012

Data Exchange Challenges

- When one protocol is used, data exchange is a simple send-receive process
- When exchanged data between systems/devices using different protocols
 - Some "Translation" (or "Mapping") will be needed

Report TOC

- Work started in 2013 to develop a report with an intention to potentially develop it into a standard
 - IEEE C37.118.2 ←→IEC 61850-90-5
- During the development, some changes to the two standards occurred
 - IEC integrated key components of TR 61850-90-5 into main parts of 61850 Ed.2.1
 - IEEE C37.118.2-2011 update has started
- Decision was made to keep it as a report but make some adjustment to take changes in IEC 61850 into account

PES-TR-74 - Recommended Mapping Approach Between IEEE Std C37.118.2[™]-2011 and IEC 61850

CONTENTS

2			
3			
4	1.	INTRODUCTION	1
5		1.1 Scope	1
6		1.2 Purpose and Intended Use	1
7	2.	References 2	
8	3.	Definitions, abbreviations and acronyms	3
9	4.	Use Cases for Mapping	3
10		4.1 Use Case A - Sending Data from IEC 61850 Server to IEEE C37.118.2 Clie	ent 3
11		4.2 Use Case B - Sending Data from IEEE C37.118.2 Server to IEC 61850 Clie	ent 4
12		4.3 Use Case Remarks	5
13	5.	Conceptual Architecture	6
14		5.1 Conceptual Architecture for Use Case A	6
15		5.2 Conceptual Architecture for Use Case B	7
16	6.	Configuring the Gateway for Mapping Use Cases	8
17		6.1 Configuring the Gateway for Mapping Use Case A	9
18		6.2 Configuring the Gateway for Use Case B	13
19	7.	Detailed Mapping Related Discussion	17
20		7.1 Overview	17
21		7.2 PMU Dataset Mapping	18
22		7.3 Configuration Information Mapping	23
23		7.3.1 Recommended SCL Based Configuration Mapping Standardization	24
24		7.4 Control Messaging Mapping	26
25	8.	Conclusions and The Recommendations	26
26	9.	Security Requirements Mapping	26
27	AF	PENDIX A Recommended Mapping between IEEE C37.118.2 and IEC 61850	28
28		A.1 Definition of the PMU dataset	28
29		A.2 Proposed Mapping of C37.118.2 Values into IEC 61850	29
30		A.3 Proposed Device Naming Convention	46
31		A.4 Future LN Implementations	46
32		A.5 IEC 61850 Message Byte Count Clarification	49
33	AF	PENDIX B Encoding for the Basic Data Types in a 61850-9-2 dataframe	51
34			
35			

Source: IEEE PES-TR74 Report

Use Cases for Mapping

Use Case A 61850 -> C37.118.2

Source: IEEE PES-TR74 Report

Use Case B C37.118.2 → 61850

Source: IEEE PES-TR74 Report

Recommend to address both use cases using gateway functions

Use Case Conceptual Architecture

Use Case A 61850 -> C37.118.2

Use Case B C37.118.2 → 61850

Source: IEEE PES-TR74 Report

Source: IEEE PES-TR74 Report

Data, Configuration, and Command Exchange for Each Use Case

Use Case A 61850 → C37.118.2

Use case-A: Data, Configuration and Command exchange

Use Case B C37.118.2 → 61850

Use case-B: Data, Configuration, and Command exchange

Source: IEEE PES-TR74 Report

Source: IEEE PES-TR74 Report

Recommended Detailed Mapping

Dataset mapping

- (Stream or Source or PDC) ID code
- Number of PMUs in the data stream
- A Time Stamp that includes
 - Second of Century
 - Fraction of Second
 - Time quality indicator
- A 16-bit Status WORD
- Synchrophasors
- Frequency
- ROCOF
- Analog values
- Digitals

<u>Configuration</u> mapping between CFG-2 (and CFG-3) and the IEC 61850 SCL:Stream ID code

- Stream ID Code (single PMU or PDC)
- Number of PMUs in the stream
- Time base
- Station name of a PMU dataset
- Source ID code of a PMU dataset
- <u>Global PMU ID</u> of a PMU dataset (a CFG3 data item – Needs to be added to 61850)
- Data format of a PMU dataset (Note: all data in a 61850 SV frame is to be in Float format)
- Number of phasors in a PMU dataset
- Number of analog values in a PMU dataset
- Number of digital status words in a PMU dataset
- Signal channel names (Note: 61850 has standard names for the Synchrophasor Data Objects; names from C37.118.2 should be mapped into the Description fields of these standard Data Objects)
- Phasor conversion factors with flags (only used when mapping Integer data from C37.118.2)

- Analog signal conversion factors (Note: CFG2 ANunit is ambiguous)
- Mask words for digital status words
- PMU location Latitude (CFG3 only)
- PMU location Longitude (CFG3 only)
- PMU location Elevation (CFG3 only)
- PMU service class Note: this data is not available in a CFG2 message. It is proposed that Service Class be incorporated in the STN.
- Phasor measurement window length
- Phasor measurement group delay
- Nominal frequency (Should be part of LLNO)
- Configuration count
- Data rate

"<u>Global PMU ID</u>", "<u>Window Length</u> (in µsec)", and "<u>Group Delay</u> (in µsec)" are not mapped

<u>Control messaging</u> and <u>security requirements</u> are not mapped!

Key Takeaways

When systems and communication capabilities expand

- Protocol update and extension
- Discontinue obsolete methods
- Develop new protocols

Image: Standard Sta

Г

Increased need for standardized protocol "Translation" or "Mapping"

Synchrophasor Data Transfer Protocol Standardization Outlook

- Development of systems and methods continues to meet user needs
- C37.118.2 revision
 - Clear up ambiguities such as status indications
 - Add new features including discrete event frame, more status indications, measurement quality, remote configuration, & missing data retrieval
- P2664 standard (STTP)
 - Publisher-Subscriber operation
 - Easier to manage data exchanges
 - Measurement value oriented rather than PMU
 - Reduced data loss & simplifies data set management
 - Easier to integrate multiple data rates & types
 - Uses standard IT managed network systems and methods (TCP & UDP/IP protocols)

Thank You!

Yi Hu, <u>yhu@quanta-technology.com</u> Ken Martin, <u>martin@electricpowergroup.com</u>