# A Regularized Framework for Multi-Channel Modal Analysis

Ryan Elliott rtellio@sandia.gov

April 15, 2021



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

## **Overview**

- Modal analysis of ringdowns is frequently conducted using single-channel techniques, such as Prony's method, which possess the following drawbacks:
  - A different set of estimated eigenvalues is returned for each signal.
  - It can be difficult to distinguish between nearby modes with different shapes.
- Existing multi-channel algorithms offer limited control over the variance of eigenvalue estimates in frequency and damping.
- We develop an optimization-based multi-channel method that provides greater control over the spectral properties of the model fit to the data.

### **Optimization formulation**

Recall that the discrete-time state update equation is

$$x_{k+1} = Ax_k + Bu_k,\tag{1}$$

which reduces to  $x_{k+1} = Ax_k$  in the free response (i.e., when  $u_k = 0$ ).

Formulation:

minimize 
$$\sum_{k \in \mathcal{K}} \left\| x_{k+1} - A x_k \right\|_2 + \mu \left\| A \right\|_*.$$
 (2)

► Notation: ||A||<sub>\*</sub> returns the sum of the singular values of A, which is a useful heuristic for rank().

– The parameter  $\mu$  can be thought of as a tuning knob for adjusting the number of oscillatory modes present in the model.

#### Overview

### **Monitored locations**

Modal analysis of ringdowns using data collected from 26 simulated sensors.



Figure: Points of measurement (simul.).

#### Figure: Monitored Locations

| No. | Name     | No. | Name         |
|-----|----------|-----|--------------|
| 1   | Kemano   | 14  | Laramie      |
| 2   | Nicola   | 15  | Round Mt.    |
| 3   | Genesee  | 16  | Tesla        |
| 4   | Langdon  | 17  | Vincent      |
| 5   | Monroe   | 18  | Valmy        |
| 6   | Coulee   | 19  | Mead         |
| 7   | Big Eddy | 20  | Mona         |
| 8   | Malin    | 21  | Ault         |
| 9   | Brownlee | 22  | Comanche     |
| 10  | Midpoint | 23  | Moenkopi     |
| 11  | Taft     | 24  | Hassayampa   |
| 12  | Colstrip | 25  | Four Corners |
| 13  | Bridger  | 26  | Newman       |

#### **Chief Joseph Brake Example**

• We explore the Pareto frontier by varying  $\mu$  and the curve fitting window.

• The ellipses that bound the mode estimates are smaller when  $\mu > 0$ .



## The effect of sweeping $\mu$

• Two key things happen as  $\mu$  increases:

- The curve fit accuracy gets slightly worse (expected due to trade off).
- The number of oscillatory modes (complex pole pairs) decreases.



### North-South B mode comparison

 Working with CAISO, we made some preliminary comparisons with the commercial software package SSAT (our results are labeled "OPT").



## Summary

- ► We are applying these techniques within the WECC WIMRG.
- The group plans to release an updated version of the WECC white paper describing the properties of the inter-area modes.
  - These techniques are being used to generate eigenvalue estimates and mode shapes for the report.
- We have identified intriguing new possibilities that could improve our understanding of the system.
  - Analysis indicates that what has historically been referred to as the BC Mode may actually be more than one mode.

# Parking lot

#### Parking lot

#### Time-domain classification of NS-B/EW-A modes

- For a brake insertion near Comanche, we observe something strange in the Nicola v. Newman frequency difference.
- The damping appears much lower, but in reality is a result of interaction between the NS-B and EW-A modes.



### Time-domain verification of BC Mode B

 In Light Spring, Colstrip and Tesla are in phase for BC Mode A, but out of phase for BC Mode B (dominant modal component).



Figure: Light Spring, 0.69 Hz, 11.4 %. Parking lot



Figure: Ringdown for brake insertion near Diablo Canyon.