Impact of Synchrophasor Data Quality on Low-Frequency Oscillation Control

Presenter: Hossein Hooshyar

Team: Hossein Hooshyar¹, Evangelos Farantatos¹, Chengwen(Ham) Zhang², Yi(Joy) Zhao², Ibrahim Altarjami², Lin Zhu², Yilu Liu^{2,3} George Stefopoulos⁴, Antena Darvishi⁴

1. Electric Power Research Institute; 2. University of Tennessee Knoxville; 3. Oak Ridge National Laboratory; 4. New York Power Authority

NASPI Work Group Meeting Virtual April 13-15, 2021

 Image: margin black
 Image: margin black

 www.epri.com
 © 2021 Electric Power Research Institute, Inc. All rights reserved.

Acknowledgement

 This collaborative work between EPRI and University of Tennessee (UTK) was supported by DOE Advanced Modeling Grid Research Program, New York Power Authority, and Terna (Italian TSO).

Synchrophasor-Based Wide-Area Oscillation Damping Control

- Application of synchrophasor technology in closed-loop wide area control
- Improve damping of target inter-area/intra-area oscillation modes
- Case study on EPRI members' power grid models by computer simulations and hardware-in-the-loop testing:
 - NY State
 - Continental Europe
 - Saudi Arabia
 - Great Britain

Synchrophasor Data Quality Issues

- Data quality could significantly impact any synchrophasor-based applications, especially in closed-loop wide area control
 - Bad headers
 - Bad measurement
 - Bad timestamp
 - Time delay (latency)
 - Data drop-out _
 - Others

PMU PMUs T16 T24 T12 T20 T28 T32 T36 T40 TIME ->

Data drop-out

Constant/random delay and occasional/consecutive data drop are investigated in this study.

Source: NASPI PMU Applications Requirements Task Force, Synchrophasor Data Quality Attributes and a Methodology for Examining Data Quality Impacts upon Synchrophasor Applications, March 2016

Impact of Time Delay on WADC

- Typically time delay is not modeled in offline dynamic simulations
- Random time delay can deteriorate WADC performance

Controller Hardware-In-the-Loop Test Setup

Grid Model Implementation for Real-Time Simulation

- OPAL-RT: ePHASORSIM model
- RTDS: RSCAD model

OPAL-RT ePHASORSIM model

RTDS RSCAD model

Controller Implementation on Generic Hardware Platform

			Block Name	Function
Basic Module ≺	$\boldsymbol{\mathcal{C}}$	1	PMU data receiver	Unpack PMU data package complying with C37.118
		2	Lead-lag structure	Basic control function
		3	D/A conversion	Convert digital signal to analog signal
		4	GPS module	Capture absolute timestamp
Advanced Module		5	Delay detector	Estimate the time delay
		6	Delay compensator	Eliminate impact of time delay
		7	Missing data handling	Eliminate impact of missing data
		8	Supervisory control	Switch PMU channel, identify transfer function model (to be added), determine optimal controller parameters (to be added)
	L	9	Oscillation detector	Disable controller if no oscillation

THE UNIVERSITY OF

Constant/Random Delay Compensation with a Buffer

- Compare Timestamp A and B
 - Timestamp A: PMU measurements are generated
 - Timestamp B: Controller receives measurements
- Use a lead-lag structure to compensate phase shift due to time delay
- Control with buffered data, e.g., buffer size = 500 ms
 - Convert random delay to constant delay
 - PMU reporting rate: 25/30Hz, 50/60Hz
 - WADC control rate: 10Hz
 - Use the package with delay closest to 500 ms to generate control command
 - Buffer size is typically equal or smaller than the max. tolerable delay.

Control with buffered data - constant delay compensation (500ms)

Occasional Data Drop Handling

- Control with buffered data
 - PMU reporting rate (30Hz) > control rate (10Hz)
 - Multiple data points are available in the buffer for each control cycle.
 - Occasional data drop does not impact control
 - Controller can hold its previous command if no data point is available for present control cycle.
 - If delay is larger than the buffer size, treated as data drop.

Control with buffered data - constant delay compensation (500ms)

Supervisory Control to Handle Consecutive Data Drop

- Supervisory control:
 - Switch to backup PMU in case of long delay or loss of primary PMU
 - Switch back to primary PMU if its performance is satisfactory

Supervisory Control Module

Case Study Systems

- 2019 planning model: 70k-bus
- Two modes: West-North and West-South
- Input signal: Bus frequency difference A and E
- Actuator: Niagara generators

- 2k+ bus model with 2017 event replicated in simulation
- Target mode: South Italy v.s. France/Germany
- Input signal: South Italy local frequency
- Actuators: Two synchronous condensers in South Italy

Continental Europe Power Grid

HIL Test Results: NY State Power Grid

- Constant Time Delay (PMU reporting rate = 30Hz, control rate = 10Hz)
 - Intrinsic closed-loop delay: around 200ms (unstable without compensation)
 - Additional time delay is introduced by network impairment simulator
 - The maximum tolerable time delay: about **400ms** _

HIL Test Results: NY State Power Grid

- Random Time Delay (PMU reporting rate = 30Hz, control rate = 10Hz)
- Delay compensation with a buffer (butter size = 400 ms)
 - Random delay (300ms mean value + 100ms variation)
 - With the delay compensation, the system remains stable.

HIL Test Results: Continental Europe Power Grid

- No Time Delay + No Data Loss
 - Dec. 3, 2017 actual oscillation event: Event #1 at 5s, Event #2 at 245s _
 - Actuator: two synchronous condensers in South Italy —

HIL Test Results: Continental Europe Power Grid

- PMU reporting rate: 25Hz; Control rate: 10Hz; Buffer size: 800 ms
- 150-950 ms random delay + 60% random data loss
 - <u>Case 0:</u> No WADC
 - Case 1: WADC + No compensation & Missing data handling
 - <u>Case 2:</u> WADC + Compensation & Missing data handling

HIL Test Results: Continental Europe Power Grid

Summary and Future Work

- Latency and data drop can significantly impact the synchrophasor-based applications, especially real-time feedback control.
- Delay compensator, missing data handling, and supervisory control, etc., are implemented to eliminate these impacts.
- Hardware-in-the-loop test with two realistic power grid model demonstrate that the implemented function modules can guarantee control effect under constant/random time delay and occasional/consecutive data drop.
- Future work
 - Compare controller performance under TCP/IP and UDP/IP
 - Investigate other data quality issues, e.g., bad timestamp

Together...Shaping the Future of Electricity

