Framework for synchrophasor measurements data processing and the case studies of the low-frequency oscillations

A. Popov12, K. Butin12, D. Dubinin3, A. Rodionov1

1Engineering center “Energoservice”, Russia
2Northern (Arctic) Federal University, Russia
3System Operator of the United Power System, Russia
WAMS development in Russia

Main Control Room
- Applications:
 - PSS monitoring
 - Advanced visualization
 - Islanding
 - Low frequency oscillation monitoring
 - State estimation:
 - Stability Margin Monitoring System
 - Centralized power system Integrity Control Scheme

Regional level
- 7 branches - United Control Rooms
- 14 branches - Regional Dispatch Offices
- Object level
 - 135 power stations & substations
 - 95 PDC & 900 PMU
 - PSS monitoring
 - PMU data quality monitoring
 - Low frequency oscillation monitoring
 - Generator operation monitoring

Monitoring and control functions

Applications:
- PSS monitoring
- Advanced visualization
- Islanding
- Low frequency oscillation monitoring
- State estimation:
 - Stability Margin Monitoring System
 - Centralized power system Integrity Control Scheme
- Post event analysis
- Model verification
- PMU data quality monitoring

Applications:
- PSS monitoring
- Advanced visualization
- Islanding
- Low frequency oscillation monitoring
- State estimation:
 - Stability Margin Monitoring System
 - Centralized power system Integrity Control Scheme
- Post event analysis
- Model verification
- PMU data quality monitoring

Applications:
- PSS monitoring
- PMU data quality monitoring
- Low frequency oscillation monitoring
- Generator operation monitoring

Applications:
- PSS monitoring
- PMU data quality monitoring
- Low frequency oscillation monitoring
- Generator operation monitoring

Applications:
- PSS monitoring
- PMU data quality monitoring
- Low frequency oscillation monitoring
- Generator operation monitoring

Applications:
- PSS monitoring
- PMU data quality monitoring
- Low frequency oscillation monitoring
- Generator operation monitoring

Applications:
- PSS monitoring
- PMU data quality monitoring
- Low frequency oscillation monitoring
- Generator operation monitoring
Low-frequency oscillations

- The experience shows that LFO occur more than 10 times a day in the power system of Russia
- Continuous online monitoring of LFO and their source detecting in the dispatch center is required
- Challenges:
 - low observability of the power system
 - the source can be located in neighboring countries
Review 2015 – 2020

- **Focus of attention:** physics of oscillatory processes in big systems, detecting and identifying the low-frequency modes, developing new methods for locating the source of oscillations, real-time processing the large amounts of data, computational infrastructure.

- **Sequence of common subtasks:** data preprocessing, mode detection and selection, calculation the parameters of modes, source detection.
Set of solutions

\[N = n \times n \times n \times n \]

1 2 3 4

- Methods
- Parameters
- Implementations
Plan

- worker is activity
- plan may be worker

```json
{
    "class" : "WorkNode",
    "id" : "freq",
    "inputs" : [ "get_mode" ],
    "work" : {
        "descr" : "Get frequency of mode",
        "worker" : {
            "class" : "modulation.IqFreq",
            "params" : {...}
        }
    },
    "result" : {
        "indep" : "Time",
        "dep" : "Frequency [Hz]"
    }
}
```
Varying the worker: get mode

- **FIR-filter (401 taps)**
- **IIR-filter (Butterworth, 3 order, 14 taps)**
Varying the worker: get mode

FIR-filter (301 taps) IIR-filter (Butterworth, 3 order, 14 taps)
Dsplab

- Field of application: Development of the DSP routines that require a flexible configuration of different stages of calculations on the user level; **investigation of variety of methods** solving the same DSP task.
- User can define the **plan of works** and then set the workers. The replacement of the worker does not destroy the workflow.
- Types of nodes: **Work, Map (Loop), Select and Pack**
- Licence: **LGPLv3**
- Programming language: **Python 3**

[github.com/aleneus/dsplab]
There are different strategies for splitting data for parallel processing. But the functional nature of the plan itself provides the automatic parallelism. Suitable software development technologies: “lightweight” threads, channels.
Real LFO cases

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Region</th>
<th>Number of data sources</th>
<th>Dataset</th>
<th>Record duration (min)</th>
<th>Mode (Hz)</th>
<th>Amplitude (P, MW), max</th>
<th>Duration of oscillations (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.05.2018</td>
<td>North-central</td>
<td>83</td>
<td>f</td>
<td>5</td>
<td>0.5 - 0.7</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>07.03.2019</td>
<td>West</td>
<td>5</td>
<td>f, P, Q, U</td>
<td>4</td>
<td>0.7</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>02.05.2020</td>
<td>Central</td>
<td>114</td>
<td>P</td>
<td>2</td>
<td>0.13, 0.3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>04.05.2020</td>
<td>Central</td>
<td>114</td>
<td>P</td>
<td>3</td>
<td>0.31</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>04.05.2020</td>
<td>Central</td>
<td>114</td>
<td>P</td>
<td>2</td>
<td>0.25 - 0.3</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>16.06.2020</td>
<td>West</td>
<td>116</td>
<td>f, P, Q, U</td>
<td>4</td>
<td>0.25 - 0.3, 0.11</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>02.09.2020</td>
<td>South</td>
<td>47</td>
<td>f, P, Q, U, I</td>
<td>3</td>
<td>0.25</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>24.09.2020</td>
<td>South</td>
<td>67</td>
<td>P, Q, U</td>
<td>5</td>
<td>0.2 - 0.3</td>
<td>55</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>25.11.2020</td>
<td>Syberia</td>
<td>202</td>
<td>f, P, Q, U</td>
<td>15</td>
<td>0.35</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>
Case #7

a) Amplitude power spectrum
 Energy Flow method

b) Dissipation
P and Q contribution

\[DEF_{ij}(t) = \int \left(\Delta P_{ij} d\Theta_i + \Delta Q_{ij} \frac{dV_i}{V^*_i} \right) \]
Conclusion

- Detection the source of LFO is one of the many stages of processing the synchrophasor measurements data.
- Due to the growing variety of methods for solving individual subtasks, program tools, allowing us to explore combinations of methods and apply the most successful ones are in demand.
- An approach to the representation of the data processing in the form of a generalized scheme (plan) with the possibility of variation of the used stage implementations is proposed.
- In the context of a generalized processing scheme, the DEF method has been successfully applied to analyze several real LFO cases in the power system of Russia.
Thank you for your attention!

Kirill Butin k.butin@ens.ru
Alexandr Popov a.popov@ens.ru
Dmitry Dubinin dubinin@so-ups.ru
Andrey Rodionov a.rodionov@ens.ru