Life Cycle Testing of Synchrophasor Based Systems used for Protection, Monitoring and Control

CIGRE REPORT

Mladen Kezunovic, Ph.D, P.E.

CIGRE WG Convener

Texas A&M University

NASPI Meeting April 13-15, 2021

Background about CIGRE

- Organization:
 - Conseil International des Grands Réseaux Électriques (International Council on Large Electric Systems)
 - Established in Paris in 1921; 15,000 members from over 90 countries
 - Study Committee B5 (Protection and Automation)
- WG groups of interest:
 - WG B5.62, Life Cycle Testing of Synchrophasor Based Systems used for Protection, Monitoring and Control
 - WG C2.18, Wide Area Monitoring Protection and Control Systems Decision Support for System Operators
 - JWG C4-C2.62-IEEE, Review of Advancements in Synchrophasor Measurement Applications

Life-Cycle Management: Spiral Model

Synhrophasor System: Architecture

CIGRE WG B5.62

WG host: Study Committee B5 "Protection and Automation"

Working Group Members (report contributors):

M. Kezunovic, Convener (US)

Nikkilä Antti-Juhani, (FI); Ritesh Bharat, (AU); Martin Greenwood, (NL); Yilu Liu, (US); Daniela Vidal Saiki Stearn, (GB); Tianshu Bi, (CN); Dmitry Dubinin, (RU); Hao Liu, (CN); Rafael de Oliveira Fernandes (BR)

WG Activity: 2017-2020; Final Report and Electra article to be published in 2021

Relationship to IEEE work: PC37.242[™]/D5 "Draft Guide for Synchronization, Calibration, Testing, and Installation of Phasor Measurement Units (PMUs) for Power System Protection and Control"

CIGRE WG B5.62: Terms of Reference-Questions

- What are the existing PMU and Synchrophasor system standards, and what is their impact on testing and certification?
- What is the importance of the concept of interoperability and why it matters?
- Why the certification may be needed and who is authorized to do it?
- How certification may be accomplished and what are associated costs?
- What are acceptance, commissioning, periodic maintenance and troubleshooting test procedures and how do they relate to the life-cycle management of synchrophasor systems?
- Why such life cycle test procedures matter and how they are implemented today?
- How to plan for the PMU certification and the lifecycle testing of PMUs and Synchrophasor Systems?

CIGRE WG B5.62: Terms of Reference-Deliverable

Discussion of the standards and interoperability requirements to be observed when implementing the testing and certification process.

The role of components and end-to-end testing of Synchrophasor Systems in the field and assessment of impact of errors on the synchrophasor applications

The role of testing, field evaluation and troubleshooting for PMUs and Synchrophasor Systems, as well as related support tools for the infrastructure lifecycle management

Guidelines for proposed testing requirements/specification

Standards and Practices

Standards

- IEEE C37.118.1a-2014.
- IEC/IEEE 60255-118-1 Edition 1.0 2018-12.
- IEC/IEEE 61850-9-3-2016
- IEEE C37.238-2017
- IEEE P2030.101-2018
- IEEE C37.242-2013 (Rev 2021 was not discuss)

Practices

- Brazil
- China
- Finland
- India
- Russia
- USA

Practices-Brazil

				1
D	FIRST	SECOND	THIRD	Label
_				SteadyState/FreqResp/TVE
				SteadyState/FreqResp/Fe
				SteadyState/FreqResp/RFe
				SteadyState/Harmonics/TVE
				SteadyState/Harmonics/Fe
				SteadyState/Harmonics/RFe
				SteadyState/InterHarmonics/TVE
				SteadyState/InterHarmonics/Fe
				SteadyState/InterHarmonics/RFe
0				SteadyState/Mag/TVE
1				SteadyState/Mag/Fe
2				SteadyState/Mag/RFe
3				Ramp/ramp/TVE
4				Ramp/ramp/Fe
5				Ramp/ramp/RFe
6				Modulation/Phase/TVE
7				Modulation/Phase/Fe
8				Modulation/Phase/RFe
9				Modulation/Amplitude/TVE
D				Modulation/Amplitude/Fe
1				Modulation/Amplitude/RFe
2				Modulation/Combined/TVE
3				Modulation/Combined/Fe
4				Modulation/Combined/RFe
5				Step/Phase/Phasor RespTime
6				Step/Phase/Phasor DelayTime
7				Step/Phase/PhaseOvershoot
8				Step/Phase/FreqRespTime
9				Step/Phase/ROCOFRespTime
0				Step/Phase/FreqOverShoot
1				Step/Phase/ROCOFOvershoot
2				Step/Phase/AmplOvershoot
3				Step/Amplitude/PhasorRespTime
4				Step/Amplitude/PhasorDelayTime
5				Step/Amplitude/PhaseOvershoot
6				Step/Amplitude/FreqRespTime
7				Step/Amplitude/ROCOFRespTime
8				Step/Amplitude/FreqOverShoot
9				Step/Amplitude/ROCOFOvershoot
0				Step/Amplitude/AmplOvershoot
1				Latana

Practices-China

Δf (Hz)	AE (%)	PE (°) for voltag	e PE (°) fo	r current	FE (Hz)	RFE (Hz/s)			
1	0.2	0.2	0	.5	0.002	0.01			
5	0.2	0.5		1					
Report rate (Hz)	Out-of-	band range (Hz)	AF (%)	PF (°)	FF (H	47)			
100	1	.00 ~150	0.5	1	0.02	.025 of SYMS			
						1111.			
Test conditions	6 AE (%) PE (°)	FE (Hz)	RFE (Hz/s	;)				
$0.0U_n \le U < 0.5U_r$	1 0.2	0.5	0.000	0.04		Local Measurement Dat Concentrator(LMDC)	ta and a second s	Local Measurement Data Concentrator(LMDC)	
$0.5U_n \le U < 1.2U_r$	υ.2 1	0.2	0.002	0.01			→ Ethernet →		
0.0 <i>I</i> _n ≤ <i>I</i> <0.2 <i>I</i> _n	0.2	1					+	t i i i i i i i i i i i i i i i i i i i	
$0.2I_n \le I < 1.2I_n$	0.2	0.5		_		U, I, f, ROCOF	U, I, f, ROCOF	U, I, f, ROCOF Inter-harmonics	
		-	• • • •					Power quanty	
Report rate	Response time (ms)								
(Hz)	Amplitude	Phase	Frequency	ROCO	F	Synchronized measurement			
50	140	140	280	280		device for renewables (SMD-R)	Synchronized measurement device for control (SMD-C)	Synchronized measurement device for loads (SMD-L)	Calibrator of SMD (SMD-CAL)
100	70	70	280	280			↑	↑	

Practices-Finland

Practices-India

Test Nos	DESCRIPTION OF THE TEST	Type test		Field test	
	FUNCTIONAL TESTS FOR PMU				
1.	Check for BOQ, Technical details, Construction & Wiring as per PMU drawings	\checkmark	\checkmark	\checkmark	
2.	Check for PMU database & configuration settings	\checkmark	\checkmark	\checkmark	
3.	Check the operation of all Analog inputs, Digital and Status input points of PMU		\checkmark	\checkmark	
4.	Check operation of all communication ports of PMU		\checkmark	\checkmark	
5.	Check for communication between PMU and PDC	\checkmark		\checkmark	
6.	Test for downloading of PMU database from PDC	\checkmark		\checkmark	
7.	Test for PMU time synchronization from GPS	\checkmark		\checkmark	
8.	Test Power Supply Voltage Margin, Ripple Levels and Short Circuit Protection	\checkmark			
9.	Test for PMU operation with DC power supply voltage variation	\checkmark			
10.	Check for auto restoration of PMU on DC power recovery after its failure	\checkmark	\checkmark	\checkmark	
11.	Test for PMU diagnostic feature	\checkmark			
12.	Accuracy tests as per IEEE C37.118	\checkmark			
13.	Test for PMU internal Clock stability	\checkmark			
14.	Test for Peak-Peak variation in PMU measurement Noise: During each Step of the Steady State	✓			

Practices-Russia

The PMU shall perform measurements of the following parameters:

- the phasors of phase-to-phase voltages, where the modulus is the effective value of the fundamental harmonic of the phase-to-phase voltage (U_a , U_b , U_c), and the phase angle is the corresponding absolute angle (δ_{Ua} , δ_{Ub} , δ_{Uc});
- the phase-to-phase phasors, where the modulus is the effective value of the fundamental harmonic of the phase-to-phase current (I_a , I_b , I_c), and the phase angle is the corresponding absolute angle (δ_{Ia} , δ_{Ib} , δ_{Ic});
- frequency of phase-to-phase and direct sequence (f_a , f_b , f_c , f_{U1});
- frequency change rate (df_a/ dt, df_b/dt, df_c/dt).

If it is necessary to measure the parameters of the generators excitation system, the following measurements shall be implemented:

- excitation voltage (rotor voltages) of the generator (U_f);
- excitation current (rotor current) of the generator (I_f);
- excitation voltage of the exciter (U_{ff});
- excitation current of the exciter ($\mathrm{I}_{\mathrm{ff}}).$

Practices-USA

Integration Requirements

- Interoperability and interchangeability
- Calibration and certification
- Component and end-to-end testing
- Backward compatibility and interoperability
- Conclusions: Discussion at what lifecycle stage the above matters and how is it verified

Life-cycle Requirements

Existing testing steps:

- China: Commissioning, periodic, troubleshooting
- Finland: commissioning, periodic
- Russia: System of Voluntary Certification
- Brazil: steady state, dynamic and latency tests

Existing testing practices:

• Some certification test were performed in all the countries

Recommendations

Future Testing Protocols:

• The IEEE standard IEEE C37.242-2013 (revised in 2021) should be used. National standards with improved requirements should also be adopted

Future testing tools and methodologies:

 In-service testing tools are not fully available, and end-to-end testing procedures are not well defined

Staff training:

• In most instances, staff dedicated to synchrophasor system testing is very limited. Training programs in collaboration with academia are recommended

Distribution application of synchrophasor systems:

• This area is rapidly expanding and yet the performance requirements are quite different. Forming a WG to address this issues is recommended

Future Requirements

- Optical CT and PT with built-in PMUs
- Ultra-fast devices
- Higher reporting rate devices
- Include odd and even harmonics
- PMU with alternative/backup Timing Source
- Portable devices
- Non-contact measurement
- Multifunctional units

Next Steps

End users should persist in looking at the synchrophasor systems in a holistic way by defining the life-cycle test and calibration procedures. If such proceedings are not in place, they should be developed

Vendors should be ready to offer and perform interoperability tests as needed to verify that end-to-end legacy systems may be upgraded with a variety of products on the market going forward.

Standards organizations should develop procedures for application testing that will also encompass end-to-end testing of the underlying synchrophasor infrastructure.

Consultants, vendors, and academic researchers should look into the fundamentals needed to better understand the synchrophasor system performance under transient conditions and recommend adequate calibration and test procedures beyond what is currently defined in the standards.

Together -

building a prosperous future

where energy is clean, abundant, reliable, safe, secure and affordable

