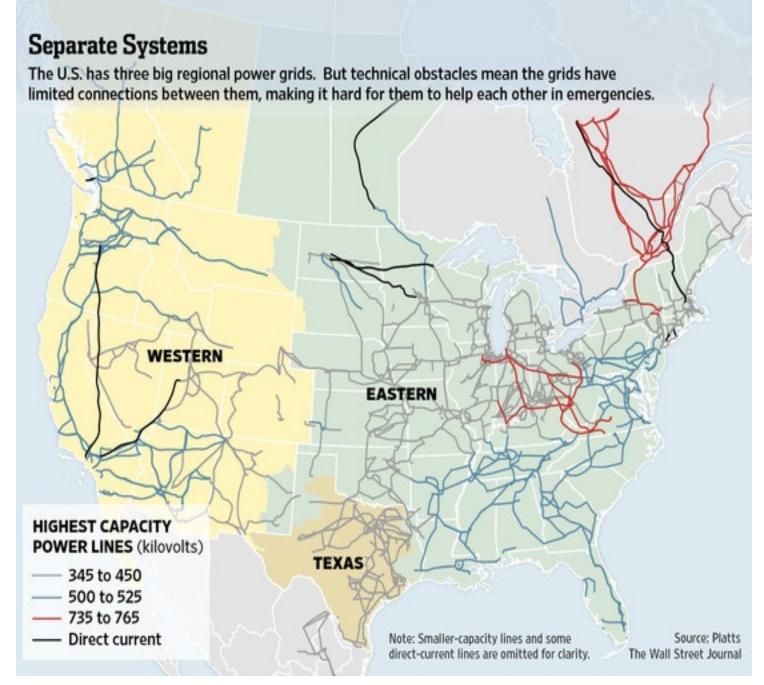


### Data for FOA 1861 Bringing It All Together

April 13, 2021

Jeffery Banning Eric Andersen Jim Follum








#### The Need for Data

- Dept of Energy FOA (Funding Opportunity Announcement) 1861
- Derive additional value from the vast amounts of sensor data already generated
- Real world data from each of the three US interconnections



Source identified on image, used without permission



### **The High-Level Process**

**Identify Utilities** 

Establish NDAs

Acquire Data & Event Logs

Inspect/QC Data & Select PMUs

Create & Run Spark ETL Jobs

QC Final Data & Optimize

Load Data onto Hard Drives

Data
Delivered to
Awardees for
Use



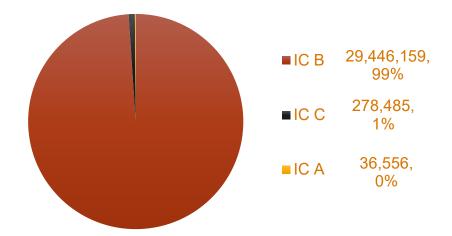
### **Obtaining the Data**

- Near real-time PMU may fall under Critical Infrastructure Protection (CIP)
- Some utilities were hesitant to contribute data due to Critical Infrastructure Information (CII) and CIP concerns
- Obtaining older data and receiving the data under an NDA helped alleviate concerns
- PNNL anonymized the data

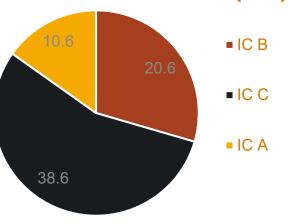


## **Anonymized Data Set: How It Started**

- Every contributor's data was different
- Multiple file types. All had to be converted to CSV
- Archived frame rates, 30/sec and 60/sec
- Positive sequence, ABC phases, status values, 1 or 2 voltage measurements, 1 to 6 current measurements
- Final schema: Single voltage measurement (Pos, ABC), single current measurement (Pos, ABC), F/dF, Status
- Single PMU/file; multiple PMU/file
- Each PMU assigned random ID value




# Source Data Snapshot


- Most data covers 2016/2017
- One contributor only had 2018/2019
- Lots of small files in IC B

|                | IC C    | IC B       | IC A    | Total      |
|----------------|---------|------------|---------|------------|
| Received Files | 278,485 | 29,446,159 | 2       | 29,724,646 |
| PMUs           | 250     | 43         | 221     | 514        |
| CSV Files      | 334,315 | 29,446,159 | 36,556  | 29,817,030 |
| CSV Storage    | 38.6 TB | 20.6 TB    | 10.6 TB | 69.8 TB    |

### **CSV Files Per Interconnection**



### **CSV Storage Per Interconnection (TB)**





#### **Event logs**

- Utilities provided event logs to supplement their PMU data: over 9000 entries
- Several benefits for research teams
  - Indicated events of interest for utilities
  - Supported development of event detection and classification algorithms
  - Provided a means for training supervised learning methods
- Several challenges
  - Anonymization did not allow for detailed event descriptions
  - Syntax varied among data contributors
- Conversion to common syntax
  - Automated conversion of keywords
  - Manual conversion of long-form event descriptions
  - Event descriptions included up to three levels of detail



## **Anonymized Data Set: How We Got There**

- Used Apache Spark for ETL (Extract, Transform, Load)
  - Extracted data from CSV files
  - Transformed data to common schema and field patterns
    - ✓ Map source fields to correct common schema fields
    - ✓ Modify UTC timestamp format
    - ✓ Filter known bad data
    - ✓ Convert to volts, if necessary
    - ✓ Assign anonymized ID value
  - Loaded data into Parquet files
- Dataset Partition
  - Training: Year/Month/Day
  - Test: Added Year/Month/Day/ID option



# **Anonymized Data Set: Training and Test Data Sets**

- Created two distinct datasets: Training and Test
- Split in repeating 6-week / 2-week pattern for duration of data provided
- Attempting to ensure all FOA awardees are working with the same data during the training and testing phases of their research

| Dataset  | Total Size | Total Records |
|----------|------------|---------------|
| Training | 20.4 TB    | 495.6 Billion |
| Test     | 7.1 TB     | 168.3 Billion |
| Total    | 27.5 TB    | 663.9 Billion |



# Conclusion What's Next – Some things to think about

- Utilities should start thinking about how PMU data is archived, and how to make it more accessible for research purposes
- Event logs are as critically important to researchers as the data itself, and the event logs need to be detailed, accurate, and use a common taxonomy between utilities
- Utilities need to communicate to researchers what is important in the data
- Researchers need to communicate back to data providers the kinds of detail they need in the event logs for training ML/AI algorithms



## Thank you

