

1500 Hz Real-Time Synchrophasor Measurement

Motivation:

1. Low-cost is critical for application of synchronized measurements on distribution system. Computationally efficient and accurate measurement algorithm is one of key components for low-cost target.

2. 60 measurements/second can not capture the grid events that occur at cycle level such as sub-synchronous oscillation, system transient faults, etc. State-of-the-Art: 60 Hz (or 120 Hz) Synchrophasor measurements in PMUs. Our capability: 1500 Hz Synchrophasor measurements on low-cost hardware. **Application Examples:**

Synchrophasors measurements on low-cost hardware A high frequency transient events capture

- Accurate oscillation source localization
- \checkmark Fast grid control and protections (e.g., high/low frequency tripping)
- High-precision Rate of Change of Frequency estimation

Computationally Efficient Synchrophasor Algorithms for Ultra-High-Rate Phasor Measurements

Lingwei "Eric" Zhan¹, He "Henry" Yin², Yilu Liu^{1, 2} . Oak Ridge National Laboratory 2. The University of Tennessee, Knoxville

Same Accuracy as Classical DFT Algo (140 s Field Data)

Extremely Low Computation Cost								
mpling Rate	Window Size (cycle)	Computation Time (second)						
		DFT Algorithm	Proposed Algorithm	Faster				
40 Hz	5	1.279	0.002	650x				
	10	2.396	0.002	1200x				
	20	4.611	0.002	2300x				
880 Hz	5	2.590	0.002	1300x				
	10	4.870	0.002	2400x				
	20	9.240	0.002	4600x				

Accurate and computationally efficient Synchrophasor measurement algorithm. Contribute to Ubiquitous and low-cost synchrophasor measurements on distribution system. Contribute to dynamic monitoring, modeling, control and protection of DERs.

Sampling	Window Size (cycle)	Computation Time (second)		Freedoor
Rate		classic	new	Faster
	1	7.23	0.59	12x
1500 Hz	3	18.4	0.57	32x
	6	35.6	0.58	61x

10 - 100x faster vs Classical DFT Algo (140 s Field Data)

Summary

