

Improving the Accuracy of Modeling/Simulation Solvers to Better Understand the Impact of Inverter-Based Resources and other Fast Dynamics on Power Grids

PRESENTED BY David Schoenwald Sandia National Labs

NASPI Work Group Virtual Meeting April 13, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Project Team

Dr. David Schoenwald (Project PI) Dr. Hyungjin Choi Dr. Felipe Wilches-Bernal

Prof. Matt Donnelly Prof. Josh Wold Mr. Thad Haines (now with Sandia)

Prof. Tom Overbye Prof. Komal Shetye Mr. Won Jang

Dr. Mark Laufenberg Dr. Saurav Mohapatra

The presenter gratefully acknowledges the support of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (SETO) Award Number DE-EE0036461.

Background and Motivation

Among the ways in which Inverter-Based Resources (IBRs) differ from traditional synchronous generation:

- **1.** Grid interconnection is realized via electronic converters.
- 2. Injected power from IBRs is often highly variable and intermittent.

1. \rightarrow Problem of simulating the interface of a fast dynamic component (electronic converter) with a slower system (power grid).

2. \rightarrow Need to run simulations spanning longer time frames than those associated with typical transient stability simulations.

Combined, 1. and 2. \rightarrow Simultaneous simulation of fast and slow dynamics.

High penetration of IBRs \rightarrow Low inertia grid \rightarrow Increased rate of change of frequency (ROCOF) in response to transient events.

Numerical integration algorithms currently deployed in power system dynamic simulation tools were not designed to study these vastly different dynamic phenomena in a single simulation scenario.

What is needed are:

Better numerical solvers to simulate fast & slow dynamics on longer time frames.

Current Practice

Dynamics	Timescale	Simulation Toolsets	Examples			
Electromagnetic Transients (EMTP)	10 ⁻⁶ – 10 ⁻² seconds	Three phase simulation, e.g., EMTP, Spice	FaultsVoltage spikesHarmonics			
Transient Stability	10 ⁻² – 100 seconds	Positive sequence simulation, e.g., PSLF, PSSE, PowerWorld	Inertia dynamicsGenerator controlsInduction motor stalls			
Extended Term Dynamics	100 seconds – hours	Capability gap – methods such as analysis of set of power flow cases are used	 Automatic Generation Control FIDVR Frequency response 			
Steady State	hours – years	Positive sequence power flow, e.g., solving nonlinear algebraic equations	 Equipment overloading Reactive resource mgmt System losses and economics 			

Current Practice

Power system dynamics consist of a set of differentialalgebraic equations (DAE) of the following form:

$$\dot{x} = f(x, v)$$
 (1)
 $0 = g(x, v) = i(x, v) - Yv$ (2)

- x = vector of state variables
- v = vector of bus voltages (real and imaginary parts)
- i = vector of current injections (real and imaginary parts)
- Y = network admittance matrix

Current Practice: Runge-Kutta Method

The second-order Runge-Kutta (RK2) method is one of the most widely used numerical integration schemes in existing commercial dynamic simulation software tools.

6/14

Stability region of RK2 method h = integration time step $\dot{x} = \lambda x$ is system being solved

To maintain stability, h and/or $|\text{Real}(\lambda)|$ must remain small \rightarrow computation times will be relatively long and/or fast transients will not be accurately captured.

Plot from: S. Kim and T. J. Overbye, "Optimal Subinterval Selection Approach for Power System Transient Stability Simulation," *Energies*, vol. 8, pp. 11871-11882, 2015.

Variable Time Step Algorithm

- In the variable time step method, the time step can increase as fast transients subside; conversely, the time step can be reduced to capture fast transients.
- This permits a reduction in the number of necessary iterations, supporting the use of more complex integration schemes.
- This is accomplished through time step control, which estimates error at each iteration and adjusts the time step to meet a tolerance threshold.

Regions of stability for four candidate integrators for a given step size. The poles of a representative power system are shown for reference.

Plot from: R. Concepcion, M. Donnelly, R. Elliott, and J. Sanchez-Gasca, "Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation," Sandia Technical Report, SAND2016-0065, 2016.

Variable Time Step Example

	Ste	p Size [seconds]			Solutions Per Step					
Method	Max	Min	Ave	Total Steps	Ave	Max	Total Slns.	Sim. Time [seconds]	File Size [bytes]	
Huen's	0.0083	8.33E-03	0.0083	72,001	2	2	144,002	483.64	778,259,381	
ode23/ode23t	8.6300	1.19E-06	0.0570	2,662	2	775	6,632	53.4	32,772,591	
$\Delta Ratio$	0.001	7,000	0.146	27.05	1	0.003	21.71	9.06	23.75	

• VTS method is labeled ode23/ode23t. Simulation runs in PST (Matlab-based Power System Toolbox).

(h)

- System modeled is MiniWECC: 122 buses, 171 lines, 88 loads, 34 generators, 623 states.
- Event is a +435 MW load step on Bus 2 at t=1 sec.
- Each area has identical AGC that acts at t=40 sec and every 2 minutes thereafter.
- Simulation is run for 10 mins (600 secs).
- Results show VTS runs 9 times faster than FTS with a 24 times smaller output file size.

Variable Time Step Example

9/14

Sensitivity Analysis of VTS Method

		VTS									
	FTS	Base	Initial Step Size		Rel./Abs. Tolerance			ODE Solvers			
		Case	10-5	10-2	10-1	10-3	10-4	10-5	ode15s	ode113	ode23
Avg Error [%]	0.0	3.4e-3	7.4e-4	4.5e-4	3.0e-3	1.0e-2	7.3e-3	3.5e-3	3.1e-4	5.5e-5	2.7e-5
Total Comp Time [s]	333.5	176.5	187.0	173.4	169.4	16.5	30.2	92.6	117.4	263.9	280.3
Avg Time Step [s]	0.004	0.010	0.010	0.001	0.010	0.229	0.078	0.025	0.014	0.008	0.007
Max Time Step [s]	0.004	21.900	19.900	14.100	23.400	21.900	21.900	21.900	10.000	0.156	0.128
Min Time Step [s]	4e-3	1.6e-5	1.0e-5	1.6e-5	1.6e-5	3.9e-4	1.2e-4	4.2e-5	3.9e-5	5.8e-5	8.8e-6
Avg Sol per Step	N/A	2	2	2	2	4	3	2	2	3	2
Max Sol per Step	N/A	100	96	96	96	104	100	100	96	27	8
Total Sols	N/A	48075	48738	50566	47570	3722	7906	20984	30956	87794	77082
Total Steps	N/A	23644	23849	24251	23629	1049	3087	9553	17734	29150	35632

- Model simulated is Kundur two-area four-machine system.
- Event is a perturbation of governors to mimic solar variation due to cloud cover.
- Sensitivity is studied w.r.t. initial step size, error tolerance, and type of ODE solver.
- Minimal sensitivity to initial step size.
- Different error tolerances have large impact on computation time with minimal impact on solution accuracy.
- ODE solver type greatly impacts computation time and accuracy (non-stiff solvers are slower but more accurate than stiff solvers).

(ih

Multi-Rate Algorithms

- Another approach to extended simulation times is the use of **multi-rate methods**.
- In this approach, h is a small timestep for fast changing variables.
- H is a longer time step for slow changing variables.
- H is an integer multiple of h.
- In the figure, $H = 4 \cdot h$.

(h

Plot from: S. Kim and T. J. Overbye, "Optimal Subinterval Selection Approach for Power System Transient Stability Simulation," *Energies*, vol. 8, pp. 11871-11882, 2015.

11/14

Multi-Rate Method Examples

Computation times by integration method

System	Single Rate Reduced Time Step	Multirate Larger Time Step			
42-Bus	2.02 s	0.24 s			
2000-Bus	147.95 s	17.52 s			

Mean squared error estimates by integration method

System	Single Rate Larger Time Step	Multirate Larger Time Step		
42-Bus	Does Not Converge	7.60E-7		
2000-Bus Rotor Angle	39.27	2.98E-7		
2000-Bus Voltage Mag.	0.003	0		
2000-Bus Voltage Angle	130.86	2.14E-7		

MR method yields:

- More accurate results
- Approx. 9 times faster run times

2000-bus synthetic

grid for ERCOT

Better convergence than FTS

12/14

Other Approaches Being Investigated

13/14

- Parallelization techniques based on distributed computing to speed numerical solution of system equations.
- Improved error analysis of numerical methods to study systems with noise and modeling uncertainties → uncertainty propagation.
- Improved modeling AGC, grid forming and grid following inverters.
- Adaptive modeling framework software that switches between classical transient simulation and long-term time sequenced power flow simulation.

Conclusions

- Rapidly increasing grid integration of IBRs is highlighting the need for numerical solvers better suited to simulate the fast and slow dynamics associated with inverter-connected PV systems over extended time frames.
- Existing commercial simulation toolsets were not designed to study these vastly different dynamic phenomena in a single simulation scenario.
- New numerical methods, improved models, and advanced software techniques are being developed to address the need for longer simulation times of systems with dynamics on widely varying time scales.