

Funded by:

Modeling and Control of Solar PVs for Large Grid Disturbances and Weak Grids

Using DQ-Domain Admittance Measurements to Tune Inverter Models

PI: Lingling Fan, University of South Florida Collaborators: Zhixin Miao, Shahil Shah, Przemyslaw Koralewicz, and Vahan Gevorgian

NASPI Work Group Virtual Meeting

April 13, 2021

Funded by:

- Historically, frequency-domain measurements have been used to find out synchronous generator's dqaxis reactances' transfer function (Krause' book, Chapter 7.8)
- Starting from the dq-frame model developed in [1, 2], can we tune the model structure to match the DQ admittance frequency response?

- 1. L. Fan, " Modeling Type-4 Wind in Weak Grids," TSTE 2018. DOI: 10.1109/TSTE.2018.2849849
- M. Zhang, Z. Miao, L. Fan, "Reduced-Order Analytical Model of Grid-Connected Solar Photovoltaic Systems for Low-Frequency Oscillation Analysis," TSTE 2021. DOI: 10.1109/TSTE.2021.3061296

Impedance Measurement System at NREL

7-MVA grid simulator

Output Grid-side ARU transformer transformer

4 NP-VSC in parallel

5-MW dynamometer

Medium-voltage sensing

1000 Hz

Measure a 2.3-MVA grid-following inverter

CGI: Controllable Grid Interface DQ-domain: grid voltage at 1 pu 0. Case 1: P=0 kW, Q=0kVAr

Case 2: P =500 kW, Q=0 kVAr Case 3: P = 0 kW, Q=500 kVAr Case 4: P =1000 kW, Q=0 kVAr

 $\begin{array}{ll} Y_{dd}(j\omega) & Y_{dq}(j\omega) \\ Y_{ad}(j\omega) & Y_{ag}(j\omega) \end{array}$

 $Y_{da}^m(j\omega)$

 $\begin{bmatrix} I_d \\ \bar{I}_q \end{bmatrix}$

Lingling Fan, Zhixin Miao, Przemyslaw Koralewicz, Shahil Shah, and Vahan Gevorgian, "Identifying DQ-Domain Admittance Models of a 2.3-MVA Commercial Grid-Following Inverter Via Frequency-Domain and Time-Domain Data." IEEE TEC 2020. pdf

Funded by:

 $\left| \begin{array}{c} V_d \\ \bar{V}_a \end{array} \right|$

5

Insight 1: low-frequency range vs. PQ

$$\mathbf{Y}_{\rm VSC} = \frac{1}{V^2} \begin{bmatrix} P & -Q \\ -Q & -P \end{bmatrix}$$

For PQ following control, the p.u. admittance in the low-frequency range (assuming the dqframe aligned to the PCC voltage) is analytically derived.

Measurements match the analytical results.

Y gives information on operating conditions.

Case 1: P =0, Q=0 Case 2: P = 0.5 (-6 dB), Q=0 Case 3: P =0, Q= 0.5 (-6 dB) Case 4: P =1 (0 dB), Q=0

Insight 2: unbalanced control is included

At 60 Hz normal operating condition, the inverter acts as a current source. The shunt admittance is very small.

At -60 Hz (negative sequence), the inverter tries to suppress the -60 Hz current. Thus, it can be reasoned that unbalance control is included.

In dq-admittance, this is reflected **as dips at 120 Hz**.

This presentation may have proprietary information and is protected from public release.

6

The analytical model to start from

Funded by:

1. L. Fan, "Modeling Type-4 Wind in Weak Grids," TSTE 2018. DOI: 10.1109/TSTE.2018.2849849

This presentation may have proprietary information and is protected from public release.

Funded by:

Initial comparison

<1 Hz, match. The rest of the frequency responses (model versus CGI measurements) are not even remotely alike.

This presentation may have proprietary information and is protected from public release.

What should be the inverter model?

d

 $v_{q_{\perp}}^{c}$

dq

abc

θ

Vabc

PWM

PLL

Unbalanced current control - PI becomes PI+R

Gate signals

to switches

'PCC

Starting from the dq-frame model, add low-pass filters in

- voltage feed forward (VFF)

 ωL_1

 ωL_1

- outer control

(Q*)

 V_{PLL}

(O)

 $K_{pv} + K_{iv}$

- phase-locked loop (PLL)

Funded by:

9

Left: CGI measurements; Right: model

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Comparison

Y_{dd} can not reach over 25-30 dB (17-32).

This means that for a small voltage dip, the d-axis current will show large change (mode is about 60 Hz).

D-axis current reflects current magnitude if Q is 0.

Change current control: dq-frame $\rightarrow \alpha\beta$ -frame \swarrow

Change to static-frame resonant control

13

The model is built in the abc-framework. Linearization is no longer possible. We use sinusoidal injection for frequency-domain measurement of 40 points from 0.2 Hz to 1000 Hz. **Computing time: 1 ~ 2 hours**.

Ydd, Yqq match pretty well

Black: CGI measurements.

Blue and red: Model

 Y_{dq} , Y_{ad} need to be further matched after tuning V/Q control structure and parameters.

Tune the q-axis outer-control structure

A faster approach: step response data (5 minutes)

•L. Fan and Z. Miao, **"Time-Domain Measurements-Based DQ-Frame Admittance Model Identification of Inverter-Based Resources,"** *accepted, IEEE trans. Power Systems*. <u>pdf</u>

Comparison

Case 4: P =1000 kW, Q=0 kVAr

Case 3: P =0 kW, Q=500 kVAr

Black: CGI measurements. Magenta: Model

16

- Frequency-domain measurements from 0.1 Hz to 1000 Hz provide a wide range of dynamic characteristics of an inverter.
- Insights from the measurements help tune the model structure as well as parameters.
- What are the lessons learnt?
 - Models can be built based on first principles and they need to be tuned using data.
 - Efficient DQ-domain admittance characterization tool is necessary for model tuning.
 - For a given model structure, it will be great to have a tool to optimize parameters, aka, IBR Gray-Box Model Identification Toolbox (NSF award 2103480).