Facilitate IBR Integration with Highresolution Data

Derek Kou

April 13, 2021 NASPI Work Group Meeting

Data Resources in Electric Utilities

Data Resource	Availability	Resolution	Sources	Coverage	Bandwidth
SCADA	High	2-4 sec	RTUs	Substations	Low
Synchrophasor	Medium	30-60 Hz	Digital Relays, DFRs, PMUs	Transmission Substations	High
Point-on-wave /COMTRADE /Oscillography	Medium/Low	4800-1M Hz	Digital Relays, DFRs, PQ Meters	T&D, POI	Low/Medium

Value of High-resolution Data

- Transient dynamics in timescale of sub-cycles
- Coverage on distribution circuits and point of interconnection (POI)
- Event triggered high "information density"

Use Case #1 – Protective Relaying

- Reduced fault strength due to IBRs
- Need to characterize IBR fault responses
- Fault response is short in duration and challenging to capture

Use Case #1 – Fault response of solar farms

Use Case #1 – Deliverables

- Critical input for fault analysis, effective grounding, arc flash calc, ground grid design, breaker duty
- Accurate modeling and validation of IBRs in short circuit and transient analysis
- Proper design of protection schemes and relay settings near IBRs

Use Case #2 – Power Quality

- Transformer energization inrush at solar farms
- Voltage sags on distribution circuits
- Risks on nearby load customers

Use Case #2 – Power Quality

Inrush oscillography

Use Case #2 – Deliverables

- Power quality monitoring and root cause analysis
- Refined interconnection study process

Use Case #3 – Megahertz Measurement

- Joint U.S. DOE project with PNNL
- Travelling wave relays deployed at distribution solar plants
- 1 megahertz reporting rate

Use Case #3 – Megahertz Measurement

Cap bank switching oscillography

Data Infrastructure Requirements

- Digital devices in the field
- Communication bandwidth
- Cyber security
- Data collection and archiving
- Data applications

- Enabling new capabilities in modeling, monitoring, asset management, etc.
- Requiring advanced data infrastructure and analytics capabilities
- Opportunities in holistic approaches and enterprise-level solutions

Thank you!

