

Implementing PMU-based Systems for Transmission and Distribution System Analysis

NASPI Working Group Meeting April 13, 2021

Contents

1. Deployment of a PMU-Based EMS System at TNB

Mohd Khairun Nizam Mohd Sarmin, TNB and Marianna Vaiman, V&R Energy

2. PMU-based Real-Time Distribution System Monitoring Platform

Marianna Vaiman, V&R Energy

1. Deployment of a PMU-Based EMS System at TNB

www.vrenergy.com

Deployment of a PMU-Based EMS System at TNB

Mohd Khairun Nizam Mohd Sarmin, Head of Power System Unit at TNB Research and Marianna Vaiman, CEO at V&R Energy

NASPI Working Group Meeting April 13, 2021

Background

- Tenaga Nasional Berhad (TNB) is the largest electricity utility in Malaysia serving 9.2 million customers
 - TNB owns 57.2% of the 26.296 MW generation installed capacity, and operates transmission network with a total circuit length of 23,082 km and distribution network with a total circuit length of 660,038 km
 - TNB has recorded the highest demand of 18,566 MW and the highest energy demand of 391.85 GWh/day
- TNB Research has been instrumental in implementing the Wide-Area Intelligent System program at TNB which explores the potential benefits of PMU
 - Several real-time PMU-based applications have been successfully developed
- TNB aims for full network observability with PMUs for voltage levels of 500 kV and 275 kV by 2021

PMU-Based EMS System

- TNB PMU ROSE is PMU-based EMS system developed by V&R Energy
- Consists of multiple integrated applications:
 - LSE POM Server
 - POM-Cascading
 Analysis application [

10

- POM-OPM
 remedial actions
 application
- TNB PMU Viewer
- TNB Cascading
 Viewer

- POM Physical and Operational Margins Suite;
- PMU Phasor Measurement Unit streaming data;
- RAW Conventional State Estimator (CSE) cases;
- LSE PMU Conditioned and expanded PMU streaming data
- **RAW PMU Voltage magnitude and phase from CSE cases**

LSE POM Server Analysis Framework

Multi-step process:

- Bad data detection
- Event detection
- Filtering and smoothing
- LSE (e.g, weighted least squares method)
- Creation of expanded and conditioned PMU data stream
- Creation of PMUbased State Estimator cases (e.g., LSE Case)

TNB PMU ROSE System Facts

- The conventional State Estimator (CSE) cases represent TNB system operational model with over 1,500 buses/2,800 branches after topology processing
- Signals from 1218 PMUs / 7 PDCs are sent to TNB PMU ROSE at the rate of 25 samples/second
- Linear state estimation and all related computations are performed at the rate of 25 samples/second
- LSE cases are created at a user-defined intervals, when bad data is detected for longer then a certain interval, or an Event is detected by TNB PMU ROSE

Testing and Validation of TNB PMU ROSE

- The conventional State Estimator (CSE) and the PMU are emulated using real-time data from the real-time simulator of OPAL-RT
- TNB PMU ROSE is run on a dedicated server

Better. Brighter.

ERGY

Control signals are sent to the real-time simulator for remedial action

Estimating Values Using LSE

The results show that LSE (dark green line) successfully suppress the error and provides voltage estimates with a difference of less than 0.01% compared to the true value

- Substation with multiple PMU measurements with random errors and noise denoted by yellow, light green and red lines
- The true value is blue line

POM – Cascading Analysis Application

- Performs automated cascading analysis using LSE Cases created by the LSE POM
- Cascading outages are simulated based on consecutive AC contingency analysis
- Two cascading scenarios are incorporated:
 - "Thermal" scenario
 "Voltage" scenario
- Cascading analysis may be performed with and without remedial actions

Cascading Analysis Framework

- There are three approaches to use OPM (Optimal Mitigation Measures) remedial actions during execution of cascading analysis:
 - (1) Determine remedial actions after an Initiating Event (IE);
 - (2) Determine remedial actions at the last tier (e.g., at the end of cascading process);
 - (3) Determine remedial actions after an IE and at the last tier.

Cascading Analysis

- Cascading Viewer visualizes results of online cascading analysis
- 1877 N-1 initiating events are analyzed in one run

 41 critical cascading events were identified and ranked based on severity measured using the performance index

Stability Violation as a Result of Cascading

- A critical Initiating event results in stability violation
- The initiating event was tripping a transformer which leads to overload on other branches

Effect of Remedial Actions

- Optimal mitigation measures are identified to alleviate this stability violation
- The effect of these measures can be seen in the PMU Viewer

Conclusions and Future Work

- PMU-based EMS system was successfully deployed at TNB
- The LSE increases network visibility with accurate state estimates derived based on a set of observable PMU measurements:
 - PMU measurements are smoothed and bad data are filtered, and bus fault and line trip events are detected
- The online cascading analysis application has been demonstrated as the use case of LSE utilizing the PMUbased state estimator case
 - Fast AC contingency analysis solved with the full Newton method
- Remedial actions were demonstrated to be effective in alleviating thermal, voltage and stability violations
- Future work will involve integration with production SCADA/EMS system and PMUs, and exploring other potential applications that will benefit from the LSE

Thank you!

Mohd Khairun Nizam Bin Mohd Sarmin khairun.sarmin@tnb.com.my

Marianna Vaiman

marvaiman@vrenergy.com

2. PMU-based Real-Time Distribution System Monitoring Platform

www.vrenergy.com

PMU-based Real-Time Distribution System Monitoring Platform

Marianna Vaiman, V&R Energy

NASPI Working Group Meeting April 13, 2021

Real-Time Distribution System Monitoring Platform

- Provides real-time situational awareness in order to improve resilience of the distribution grid and enhance its reliability
- **D-PMU ROSE** platform consists of the following functionalities:
 - Three-phase distribution
 linear state estimation (D-LSE)
 - Bad PMU data detection and correction
 - Observability analysis for real-time situational awareness
 - Identifying switching events
 - Archiving and alarming
 - Advanced visualization of distribution grid state
 - Optimal PMU placement for full distribution grid observability (off-line)
 - Validating model and PMU measurements

Components of D-LSE Framework

Multi-step process:

- 1. Bad data detection, correction, alarming and reporting
- 2. Combination of filtering and smoothing techniques
- 3. Observability analysis
- 4. Three-phase Distribution Linear State Estimation
- 5. Detection of switching events (only based on PMU data)
- Real-time system monitoring (voltage and thermal)
- 7. Visualization, archiving
- Machine learning is used to improve accuracy of event detection in real-time

Bad Data Detection and Conditioning

- Step 1: Data pre-screening
- Step 2: Filtering & smoothing
- Step 3: LSE
 - Considers relationship between signals
 - Based on WLS method

Bad Data Detection and Conditioning

Estimated values after the D-LSE (filtering and weighted least squares method): Yellow

Observability Analysis and PMU Placement

- Purpose of observability analysis is to identify portions of the network observable with existing PMUs
 - Performed in real-time
 - Generates observability reports
- Purpose of optimal PMU placement is to determine locations of PMU installations to achieve full system observability
 - Off-line calculation
 - Creates PMU placement file

D-LSE Result – Observability Analysis & Visualization ²⁵

D-PMU ROSE considers a power system network to be observable for a given network topology if voltage vector at each node can be calculated based on the PMU measurements

Blue – nodes and branches that are observable with planned PMU installations (for current network topology) Black – non-observable nodes and branches P – Planned PMU installations

Detecting and Alarming on Switching Events

Topology Change

- Estimated value follow raw data during both steady state and transient conditions
- D-LSE identifies defined topology correctly

Alarming

- Event Alarm
 - If a switching event is identified, the Event Alarm indicator turns red
- Bad Data Alarm
 - If bad data is identified, Bad Data alarm turns red
- Violation Alarm
 - If a violation of voltage and/or thermal limit occurs, the Violation Alarm indicator turns red
- Multiple types of alarms might be issued simultaneously

Use of the Platform for Grid Modernization Applications

- The platform consists of the following applications:
 - Hybrid State Estimator that uses both PMU and SCADA data
 - Advanced applications:
 - FLISR (Fault Location, Isolation and Service Restoration) enhancement
 - Volt/Var optimization
 - DER dispatch
- NYSERDA demonstration project with Quanta Technology and Central Hudson

Thank you!

marvaiman@vrenergy.com

