

NASPI Work Group Meeting, 13th April 2021

Effective Area Inertia: Stability Challenges PMU-Based Metering & Machine Learning Forecasting

Background: Inertia & Challenges

Power System Disturbances: Centres of Inertia

A power system behaves as area **centres of inertia** ("masses") **linked by the network** ("springs")

Significant spread of Frequency & RoCoF across a grid during events

Example: Great Britain 9th August 2019

Power System Disturbances: Centres of Inertia

A power system behaves as area **centres of inertia** ("masses") **linked by the network** ("springs")

Significant spread of Frequency & RoCoF across a grid during events

Example: Great Britain 9th August 2019

Effective Inertia

Relates **power imbalance** in a grid to the **rate of change of frequency** that immediately results

Ability of a grid to **resist changing speed** due to a generation/demand **imbalance** or a **fault**

"Grid" can be whole interconnection or a coherent region

- a centre of inertia

Effective Inertia: Why It Matters

Low Inertia means in a disturbance:

- Frequency falls faster & further before primary response kicks in
- **Risk of Loss of Mains Disconnection** Embedded Generation disconnects at high RoCoF
- Stability / Separation Risk
 Area angles move faster
 Fast response in wrong place can destabilize

Resulting in **Additional Costs:**

- Enhance Primary Response larger volume and/or faster delivery needed
- Procure Inertia Generation trading or dedicated 0 MW plant
- Tighten Constraints Largest single potential loss of generation Inter-region flows for transient stability

Effective Inertia: Sources

Measurement & Forecasting of Effective Inertia is becoming critical to grid operation

Inertia Metering Using PMUs

Area frequency:

Area Effective Inertia Metering Using PMUs

Inertia Forecasting

Area Effective Inertia Forecasting

Confidence intervals calculated, **Validated** against metered and event inertia

Jan 24 00:00

Dav ahead

Jan 23 12:00

Behind Min. Inertia: 1100

Jan 23 00:00 DateTime

Jan 22 12:00

Jan 22 00:00

Offline Field Testing: SP Energy Networks

Offline Field Testing: SP Energy Networks

Inertia Metering & Forecast values for South Scotland and Full Scotland Areas

Validated against real system RoCoF behaviour during events

Operational Deployment: National Grid ESO, GB

NASPI WG Meeting - 13th April 2021

National Grid ESO, GB: Operational Deployment

Inertia Metering online

- Continuous, live visibility of Scotland inertia ongoing for >40 days
- PMU connections under way to cover remaining regions of GB

Inertia Forecasting imminent

- Model training underway
- Pending go-live of feed from operational systems

National Grid ESO, GB: Operational Experience

Results match expectations: consistent with variations in demand & energy mix

Regular automated validation against real system behaviour during events.

Conclusions

- **1.** Inertia is a regionally distributed parameter affecting local RoCoF and stability, not just system frequency
- 2. Effective Inertia covers all contributors to the P-RoCoF relationship, not just physical rotating transmission generation.
- **3. PMU-based metering** of Effective Area Inertia is **passive**, uses standard PMU measurements, and is **in operation now**.

Informs secure system operation, planning & analysis.

Can feed wide-area control driven fast frequency response for islanding avoidance / ride-through.

4. Machine Learning yields forecast of inertia – field-deployed offline, operational go-live soon. Insight into system sensitivities, and real-time validation of inertia metering.

