Merging Unit and Process Bus solution

Unrestricted © Siemens 2020

siemens.com/processbus

SIEMENS

Ingenuity for life

Content

SIEMENS Ingenuity for life

1	General Information	
2	Merging Unit	
3	Process Bus Client	
4	Applications	
5	Sample Synchronization (IEEE 1588v2/PTP and	d PPS)
6	Network architectures	
7	Definitions	
Unrestric	cted © Siemens 2020	

Page 2 January 21

Content

SIEMENS Ingenuity for life

1	General	Information
-	Ceneral	mormation

2 Merging Unit

3 Process Bus Client

4 Applications

5 Sample Synchronization (IEEE 1588v2/PTP and PPS)

6 Network architectures

7 Definitions

Unrestricted © Siemens 2020 Page 3 January 21

Conventional solution

Unrestricted © Siemens 2020

Page 4 January 21

Conventional Technology

Conventional technology

- Analog Input card inside device
- Proprietary bus for connection IO <-> CPU

Process Bus solution

Smart Infrastructure | Digital Grid

Process Bus Technology

Process bus technology

- Converting Analog data to digital data
- Sending of SMV via IEC 61850-9-2

Digital Substation Process Bus Overview

Page 8 January 21

Principle and benefits of process bus

Content

SIEMENS Ingenuity for life

1 General Inform	nation
------------------	--------

2 Merging Unit

3 Process Bus Client

4 Applications

5 Sample Synchronization (IEEE 1588v2/PTP and PPS)

6 Network architectures

7 Definitions

Unrestricted © Siemens 2020 Page 10 January 21

SIPROTEC Merging Unit One base module adapts to all sensor types

Principle of a Process Bus Stand-Alone merging unit Copper wires via short distances Conventional Digital interface for instrument transformers IEC 61869-9 LPIT Merging unit as part of switchgear Low power stand alone current, Rogowski coil voltage and combined sensors IEC 61869-10 and 11 Process bus FO Ethernet LPIT C divider R divider* **RC** divider* LPIT Optical HSR* or PRP Network current sensor' **IEC 61869** IEC 61850-9-2

Unrestricted © Siemens 2020 Page 11 January 21

Smart Infrastructure | Digital Grid

IEC 61850-8-1

SIPROTEC 6MU85 Merging Unit

Digitalization of all primary data close to the process

Merging Unit – SIPROTEC 6MU85

SIEMENS Ingenuity for life

Unrestricted © Siemens 2020 January 21 Up to 4 plug-in communication modules to enable connection to:

Process bus communication

 SMV: IEC 61850-9-2 / IEC 61850-9-2 LE / IEC 61869-9, GOOSE, MMS: IEC 61850-8-1

Scada communication

IEC 61850-8-1 MMS & GOOSE, DNP3, IEC 60870-5-104, Modbus IP, Profinet IO

Redundant communication

- IEC 62439-3.4 PRP, IEC 62439-3.5 HSR, RSTP, dual homing (Scada)
- IEC 62439-3.4 PRP, dual homing (process bus)

PMU Data Concentrator

Synchrophasor (IEEE C37.118)

Time synchronization

 IEEE 1588V2 IEC 61850-9-3 and IEEE C37.238:2017 (redundant with IEC 62439-3.4 PRP) and dual homing)

Additional applications

- Slave Unit Protocol for external temperature or 4-20 mA measuring devices
- Arc sensors for arc flash protection

Smart Infrastructure | Digital Grid

Merging Unit – SIPROTEC 6MU85

Benefits

- Long-term flexibility even after shipping
- Simple exchangeability and retrofitting
- Adding and removing functions throughout the entire life cycle
- Reduced number of device versions due to flexibility
- Minimization of space requirements
- Agile adaptation to future requirements
- Investment security

Ð

SIPROTEC 6MU85 Merging Unit Protection Functions

ANSI	Function	Abbr.	ANSI	Function	Abbr.
	Protection functions for 1 and 3-pole tripping	3-pole	POW	Point on Wave Switching	POW
	Hardware quantity structure expandable	I/O	DMII	Synchrophasor measurement (1 PMU can be used for max. 8	
25	Synchrocheck, synchronizing function	Sync	FINIO	voltages and 8 currents)	FINO
07	Undervoltage protection: "3-phase" or "pos.seq. V1" or	N/ a	AFD	Arc-protection (only with plug-in module ARC-CD-3FO)	
21	"universal Vx"	V<		Measured values, standard	
38	Temperature Supervision	θ>		Measured values, extended: Min, Max, Avg	
47	Overvoltage protection, negative-sequence system	V2>		Switching statistic counters	
50/51 TD	Overcurrent protection, phases	>		Circuit breaker wear monitoring	Σlx, I²t, 2F
50N/ 51N TD	Overcurrent protection, ground	IN>		CFC (Standard, Control)	
	Instantaneous tripping at switch onto fault	SOTF		CFC arithmetic	
50HS	High speed instantaneous overcurrent protection	>>>		Switching sequences function	
50BF	Circuit-breaker failure protection, 3-pole	CBFP		Inrush current detection	
50RS	Circuit-breaker restrike protection	CBRS		External trip initiation	
	Overvoltage protection: "3-phase" or "zero seq. V0" or	14		Control	
59, 59N	"pos.seq. V1" or "universal Vx"	V>		Fault recording of analog and binary signals	
67	Directional overcurrent protection, phases	l>, ∠(V,I)		Monitoring and supervision	
67N	Directional overcurrent protection, ground	IN>, ∠(V,I)		Protection interface, serial	
74TC	Trip circuit supervision	TCS		Circuit Breaker	
79	Automatic reclosing, 3-pole	AR		Disconnector	
86	Lockout				
90V	Automatic voltage control for 2 winding transformer				
90V	Automatic voltage control for 2 winding transformer with parallel operation				
90V	Automatic voltage control for 3 winding transformer				
90V	Automatic voltage control for grid coupling transformer				

Unrestricted © Siemens 2020

Merging Unit – SIPROTEC 6MU85 Integrated cyber security

Product Security

System Security

Operational Security

Features

- Customer-authorized DIGSI 5 Instances
- Role-based Access Control
- Authenticated network
 access for COM-Modules
- Use of customer certificates
- Recording of securityrelevant events and alarms
- Confirmation codes for safety-critical operations
- Crypto-chip for secure information storage
- Siemens CERT and Patch management

Unrestricted © Siemens 2020

Page 17 January 21

Cyber Security

Page 18 January 21

Smart Infrastructure | Digital Grid

Merging Unit – SIPROTEC 6MU85 Redundant power supply

Unrestricted © Siemens 2020

Page 19 January 21

Smart Infrastructure | Digital Grid

Merging Unit – SIPROTEC 6MU85

Easy, fast and secure access to device with Web Browser

Monitoring of

- Measurements
- Logs
- Settings
- Device information

Download of

 Logs as CSV or COMFEDE file (log dependent)

Secure

- https connection
- Access defined per port
- Controlled by RBAC

Unrestricted © Siemens 2020

Page 20 January 21

Merging Unit – SIPROTEC 6MU85

Easy, fast and secure access to device with Web Browser

Runtime	data Dircuit break	Circuit break.		
Health	ENS		cik	good (process) - 27 03 2019 17:22:46 535
Position	DPC		intermediate	good (process) - 27 03 2019 17 22 46 535
Trip/open cmd.	SPS		off	good (process) - 27.03.2019 17.22.46.535
Close command	SPS		off	good (process) - 27.03.2019 17.22.46.535
Command active	SPS		off	good (process) - 27 03 2019 17 22 46 535

	Runtime di	sta 🜔 Line 1 🜔 💯 OvervoltSpit 1 🕩 🗠	rinke T 1		
•	Inputs				
	>Block stage	SPS		tho	invalid (process) - 27 03 2019 17:33 32 606
	Inactive	SPS		flo	good (process) - 27.03.2019 17.22.47.033
	Behavior	ENS		on	good (process) - 27.03.2019 17:22:47.033
	Health	ENS		warning	good (process) - 27.03.2019 17:33:32.606
	Pickup	ACD		off	good (process) - 27.03.2019 17.22.47.033

	• • •	• 🖈		SIEMENS SIPROTE Siprotec 5, admini
50 of 162 logs	loaded	Operational log	downloa	ad as file \rightarrow \bigcirc (
Date	Time	Functions structure	Name	Value
18.04.2018	16:39:59.891	Circuit breaker 1	74TC sup.1BI 1:Trip-circuit failure	on
18.04.2018	16:35:10.077	VI 1ph 1:Rotor gnd. fault -I 1	General:Failure RGF frated	on
18.04.2018	16:35:03.369	E:ETH-BA-2EL:Channel 1	Line Mode:Redund. Channel Live	on
18.04.2018	16:35:03.346	E:ETH-BA-2EL:Channel 1	Line Mode:Channel Live	on
18.04.2018	16:35:00.088	Generator stator:SGF 90% MP-1ph 1	General:Health	ok
18.04.2018	16:35:00.079	Generator stator:81 UnderfreqA 1	General:Undervoltage blocking	on
18.04.2018	16:35:00.079	Generator stator:81 OverfreqA 1	General:Undervoltage blocking	on
18.04.2018	16:35:00.079	Generator stator:32R Revers.pow. 1	General:Undervoltage blocking	on
18.04.2018	16:35:00.079	Generator stator:SGF 90% MP-1ph 1	General:Health	alarm
18.04.2018	16:34:59.919	Recording	Grndfit log:Fault number	0

Recording

 Download, Delete and Trigger of Fault Records

Parameterization

Change of settings within an active setting-group

Display all signal state

- Indication of all information
- Centralized view on warnings, alarms and inactive functions

Fault recorder Fault recorder						
]	Fault number	File Name	Trigger Date	Trigger Time	State	
	1	FRA00001	2019-03-27	08:57:10.709	Downloaded	
		FRA00002	2019-03-27	14:25:29.669	Downloaded	
	3	FRA00003	2019-03-27	14:31:30.661	New	

of 3 logs loaded	Time	Function	Function block	State
27.03.2019	17:33:32.606		General	warning
27.03.2019	17:33:32.606	Line 1:	General	warning
27.03.2019	17:33:32.606	Line 1::59 Overvolt3ph 1	Definite-T 1	warning

🛢 🕑 😳 🚯 🕤 😒									SIEMENS
Generator stator									Sipe
Primary 🚇 Secondary 😱 Percentage 🤇	%								
Vpp.e									
Vph:A	57.698	/ 0*	Iph:A	0.999	A 0"	Vpp:AB	99.943	v 30°	
Vph:B	57.702	/ -120*	lph:B	1.000	A -120"	Vpp:BC	99.942	V -90*	
Ipn:A VplVph:C	57.696	/ 120*	lph:C	1.000	A. 120°	Vpp:CA	99.926	V 150°	
						Vseq:0	0.000	V 0°	
April						Vseq:1	57.699	V 0*	
Pph B						Vseq:2	0.000	V 0"	
Iseq:0	0.000 4	a 0*							
Iseq:1	1.000 /	4 0°							
lseq:2	0.000 /	4 0°							

Unrestricted © Siemens 2020

Page 21 January 21

Merging Unit – SIPROTEC 6MU85 Diagnosis homepage of ETH-BD-2FO module

Overview	Overview > Health	_
Health		
Module Info	Health Informa	tion
Network Status	Madula	01
Application Diagnosis	Module	UK
Network Protocols	Channel #1	ок
IEEE 1588	IEC61850_8_1	ОК
SNTP	PRP	ок
Communication Protocols	IEEE1588	ОК
IEC61850	SNTP	ОК
IEC61850 - GOOSE	PBMu	ОК
PB-MU		

Overview	Application Diagnostic > IEEE 15	588	_		-
Health	FIF General				
Module Info	PTP enable	Yes			
Network Status	PTP profile	IEC 61850-9-3:2016			
Application Diagnosis	Transport protocol	Layer 2 Multicast			
Network Protocols	VLAN tag	Not Support			
IEEE 1588	Clock type	Ordinary clock			
SNTP	Slave only	Yes			
Communication Protocols					
IEC61850	Slave Clock				
IEC61850 - GOOSE	General				
PB-MU	Clock ID	B4:B1:5A:FF:FE:09:B5:46			
	Domain number	0			
	Path delay mechanism	Peer-to-Peer			
	P2P request interval	1		seconds	
	Announce receipt timeout	3		seconds	
	Steps	2			
	Servo status	Locked			
	Channel live states	On			
		CH1	CH2		
	Port state	SLAVE			
	Offset	-36	+0	nanoseconds	
	Mean path delay	1411	0	nanoseconds	
	Current Master Clock Info				
		CH1	CH2		
	Clock ID	94:B8:C5:FF:FE:6A:61:40			
	Port number	1	0		
	Steps	2	0		
	Domain number	0	0		
	GM priority1	128	0		
	GM priority2	128	0		
	GM clock class	248	0		
	GM clock accuracy	47	0		
	GM clock ID	94:B8:C5:FF:FE:6A:61:40			
	Current UTC offset	37	0	seconds	
	CurrentUtcOffsetValid	True			
	Traceable	False			

Easy and fast access to detailed communication status

Unrestricted © Siemens 2020

Page 22 January 21

Intuitive setting of Merging Unit functionality, redundancy and synchronization with DIGSI 5

Protocols _				
Communicati	on			
IEC61850				
Select	Protocols	Mapping	Settings	E: ETH-BD-2FO
Image: A start of the start	IEC 61850-8-1		Settings	
	9-2 Client			
	9-2 Merg.unit		Not Applicable	
Redundancy Protocols PRP	/ Mapping	Settings Not Appli	cable	 Enable the Merging Unit functionality Select the type of redundancy Enable the IEEE 1588 synchronization
Network				IEEE 1588
Select	Protocols	Mapping	Settings	IEEE 1588 settings
	DCP		 Not Applicable 	102.1031.0.108 Clock type: OC Slave Only
	SNTP			102.1031.0.110 Profile: IEC 61850-9-3:2016
	IEEE 1588		Settings	102.1031.0.111 Domain number: 0

Unrestricted © Siemens 2020

Page 23 January 21

Content

Page 24

January 21

SIEMENS Ingenuity for life

1	General Information	
2	Applications	
3	Merging Unit	
4	Process Bus Client	
5	Sample Synchronization (IEEE 1588v2/PTP and	d PPS
6	Network architectures	
7	Definitions	
Unrestric	cted © Siemens 2020	

SIPROTEC 5 Process Bus Client (1/2)

Process Bus Client functionality is available in every SIPROTEC 5 device except 7ST85, 6MD89 and non-modular devices (7SJ81, 7Sx82)

- Ethernet communication module ETH-BD-2FO necessary
- Up to 40 (80)¹ channels per SIPROTEC5 (7SS85) Client using 2x ETH-BD-2FO
- 3x ETH-BD-2FO modules with PB client supported, up to 64 analogue values per module
- Up to 16 streams per ETH-BD-2FO accepted
- Support of IEC 61850-9-2 LE streams
- Support of IEC 61869 flexible streams

January 21

- IEC 61850-8-1 GOOSE, MMS and Process Bus Client protocol on the same module
- Supported protection functions 87B, 87L, 87T, 21, 67/67N, 50/50N, 51/51N, ... ²⁾
- Support of IEEE C37.118 (PMU) sourced by sampled measured values

Limitations: network bandwidth of 100 Mbit/s and device specific limit of 40 analog values per SIPROTEC 5 device (except 7SS85 limit of 80 values)
 87L supports two terminals

2) 87L supports two terminals Unrestricted © Siemens 2020

Page 25

SIEMENS Ingenuity for life

SIPROTEC 5 Process Bus Client (2/2)

Process Bus Client functionality is available in every SIPROTEC 5 device except 7ST85, 6MD89 and non-modular devices (7SJ81, 7Sx82)

- Acceptance of SMV with 4,0 / 4,8 / 12,8 / 14,4 / 15,36 kHz sampling frequency according to IEC 61869-9 (see details at merging unit chapter)
- Synchronization via IEEE 1588v2/PTP
- Interoperability with multivendor merging units ¹⁾
- Mixed configurations of direct connected instrument transformers and SMV
- LSVS diagnosis support (Sampled value supervision)
- Support for Edition 2.1 SynchSrcIdentity attribute
- Test- and simulation bit support

1) Interoperability is regulated in IEC 61850-9-2 Edition 2.1, use of 3rd party MU must be coordinated with DG SA&P headquarter

Unrestricted © Siemens 2020 Page 26 January 21

Content

Page 27

January 21

SIEMENS Ingenuity for life

1	General Information	
2	Merging Unit	
3	Process Bus Client	
4	Applications	
5	Sample Synchronization (IEEE 1588v2/PTP and	d PPS)
6	Network architectures	
7	Definitions	
Unrestri	cted © Siemens 2020	

Multi feeder protection with SIPROTEC 7SJ85

SIEMENS Ingenuity for life

Highlights 7SJ85

12 feeder protection incl.

- Overcurrent protection
- Directional overcurrent protection
- Frequency protection

Central protection of small substations – Mix of analog measurements and SMVs

*for simplification the required IEEE 1588v2/PTP master clock is not shown

Highlights 7UT8

Transformer protection

Line protection

Feeder protection

- Overcurrent protection
- Directional overcurrent
 protection
- Frequency protection

• • • • •

Unrestricted © Siemens 2020 Page 29 January 21

Central protection of small substations – Back-up protection in the merging units

Unrestricted © Siemens 2020

Page 30 January 21

Smart Infrastructure | Digital Grid

Transformer protection with dedicated merging unit per transformer side

Transformer protection with only 1 merging unit

*for simplification the required IEEE 1588v2/PTP master clock is not shown

6MU85 Integrated functionality

- tap changer controller
- flow sensor
- temperature sensors
- pressure sensor
- Buchholz relay
- pressure relief devices
- automatic voltage regulator
- transformer cooling control
- Switching devices control

Line differential protection – SMVs at both line ends

Unrestricted © Siemens 2020 Page 33 January 21

Smart Infrastructure | Digital Grid

Line differential protection – Mix of analog measurements and SMVs

Page 34 January 21

Smart Infrastructure | Digital Grid

Distributed busbar protection – Using SIPROTEC 5 protection devices as bay unit

Unrestricted © Siemens 2020

Page 35 January 21

Page 36 January 21

IEC 61850 Full digital Energy Automation System

Unrestricted © Siemens 2020

Content

SIEMENS Ingenuity for life

See.

1	General Information
2	Merging Unit
3	Process Bus Client
4	Applications
5	Sample Synchronization (IEEE 1588v2/PTP and PPS)
5 6	Sample Synchronization (IEEE 1588v2/PTP and PPS) Network architectures
5 6 7	Sample Synchronization (IEEE 1588v2/PTP and PPS) Network architectures Definitions
5 6 7	Sample Synchronization (IEEE 1588v2/PTP and PPS) Network architectures Definitions

Unrestricted © Siemens 2020

Page 38 January 21

Sample synchronization vs. time synchronization

Sample Synchronization

- Relative reference used to align or synchronize several signals among each other
- It can be provided by a pulse or by a time signal
- Used to synchronize the sampled values (1µs)

Time Synchronization

- Universal time reference signal, provided by a master clock
- Absolute time stamp which contains exact date and time
- Used for data fault analysis (1ms)

Synch. Method	Distribution	Typical Accuracy	Synchronization Application
IRIG-B	Separate wiring	10µs – 1ms	Time Synchronization
1 PPS	Separate wiring	<1µs	Sample Synchronization
NTP	Network	1ms – 10ms	Time Synchronization
IEEE 1588 PTP	Network	<1µs	Time and Sample Synchronization

* Some IRIG-B telegrams contain the PPS pulse and can be used for SV synch. as well

If the sampled values are not synchronized, the protection functions will be blocked to avoid maloperation

The samples values contain information about its synchronization status. This information depends on the synchronization method and the communication protocol used:

PPS or PTP Synchronization with IEC 61850 Ed. 2.0 or IEC 61850-9-2 LE streams

A merging unit sends only the synchronization state:

- 0: internally synchronized
- 1: local synchronization
- 2: global synchronization

PTP Synchronization with IEC 61850 Ed. 2.1 streams

A merging unit can, in addition, send the grandmaster clock ID of the PTP master clock used for synchronization of samples

It increases the availability of the system when all SV are synchronized by the same master although the master does not receive the global synch. signal

IEEE 1588V2 Status Response of the SIPROTEC 5 Client

PPS or PTP Synchronization with IEC 61850 Ed. 2.0 or IEC 61850-9-2 LE streams

2: global synchronization

All protection functions are operative

1: local synchronization

After the holdover time* the protection functions using more than one value are blocked**.

0: internally synchronized

After the holdover time* the protection functions using more than one value are blocked**.

PTP Synchronization with IEC 61850 Ed. 2.1 streams

2: global synchronization

All protection functions are operative

1: local synchronization

After the holdover time* protection functions using SV being synchronized by the same Master Clock ID are operative. Protection functions using SV being synchronized by different Master Clock IDs are blocked** (example line differential protection).

• 0: internally synchronized

After the holdover time* the protection functions using more than one value are blocked**

 ^{*} Holdover time depends on the initial synchronization status of the devices. It is automatically set between 5 and 25 seconds

 ^{**} Overcurrent protection will continue working while the counter difference from merging unit and client is smaller smaller than 1 count.

IEEE 1588 – Master Clock

â â â

**

RUGGEDCOM RSG2488

ពំព័ញ់ព័

NO 100 100 100

m m m

TEKRON- NTS 03-G+

Unrestricted © Siemens 2020

Page 42 January 21

Smart Infrastructure | Digital Grid

Content

Page 43

January 21

SIEMENS Ingenuity for life

1	General Information	
2	Merging Unit	
3	Process Bus Client	
4	Applications	
5	Sample Synchronization (IEEE 1588v2/PTP and	d PPS)
6	Network architectures	
7	Definitions	

Network architectures Network redundancy for process bus

PRP LAN B

New on ETH-BD-2FO module: HSR* ring with clients and server connected to PRP LANs Sample synchronization for HSR must be realized with PPS

* Support of IEEE 1588v2/PTP (transparent clock) in preparation

PRP redundancy with clients and server for station and process bus

Unrestricted © Siemens 2020

Page 44 January 21

Network architectures Physically network segregation

Simplify complexity

Use of more than one redundant process bus network reduces the network engineering

Increase the bandwidth with additional Ethernet interfaces

Efficient use of network bandwidth with customization of the analog values per SMV streams (not only IEC 61850-9-2LE data set)

Note: Seamless networks redundancy recommended

Network architectures Virtual network segregation (VLAN)

Simplify complexity

Segregation of one redundant process bus network into several virtual LANs reduces load

One physical network reduces network costs

VLAN 1-4:	CT, VT values for feeder protection
VLAN 5:	Feeder CT values for busbar protection and fault recorder
VLAN 6:	Bus VT for central fault recorder and feeder protection
Note: Seam	less networks redundancy recommended

Unrestricted © Siemens 2020

Page 46 January 21

Network architectures Example: VLAN for busbar protection with 24 bays

Process bus communication network

- Requires higher bandwidth
 - A merging unit requires approx. 4.4 5.2 Mbit / s of bandwidth with 80 samples per nominal network frequency cycle according to IEC 61850-9-2 LE.
 - It is recommended not to use more than 60% of the available bandwidth for the SV streams in a segment.
 - For a 100 Mbit / s network, it is recommended not to have more than 12 MUs according to IEC 61850-9-2 LE with 80 samples per nominal network frequency cycle (50Hz).
 - For 1Gbit/s network, the limit is 120 MUs according to IEC 61850-9-2 LE with 80 samples per nominal network frequency cycle.
 - The recommendation for the backbone is 1Gbit / s.
- Process bus networks must be available. Individual errors should not lead to the failure of the protection system.
 - Network redundancy HSR / PRP according to IEC 62439-3 is recommended

Content

SIEMENS Ingenuity for life

34.000

1	General Information	
2	Merging Unit	
3	Process Bus Client	
4	Applications	
5	Sample Synchronization (IEEE 1588v2/PTP and	d PPS)
6	Network architectures	
7	Definitions	

SIPROTEC 5 – Process Bus Definitions

SMV Stream	SMV stream is a set of current and voltage values which is transferred fast and cyclic. The information exchange is based on a publisher/subscriber mechanism. The transfer of SMV is a continuous one way stream of layer 2 Ethernet telegrams. According to IEC 61869-9 the content of a SMV stream can be freely configured. The IEC 61850-9-2 LE defines a fixed set of 4 voltage and 4 current values per SMV stream.
Merging Unit (MU)	The publisher/server of Sampled Measured Values is called Merging Unit.
PB Client	The subscriber of Sampled Measured Values can be called also Process Bus Client.
Sampling Rate	In signal processing, sampling is the reduction of a continuous-time signal (e.g. current and voltages) to a discrete- time signal. A common example is the conversion of a sound wave (a continuous signal) to a sequence of samples (a discrete-time signal). A sample is a value or set of values at a point in time. Commonly seen unit of sampling rate is Hz and means "samples per second". As an example, for most of the protection functions 4,8 kHz (4800 samples per second) is foreseen.
ASDU	Application Service Data Unit (ASDU) One ASDU contains one set of sampled measured values and related quality information from the same sampling time. The mapping provides the capability to link multiple ASDU's from subsequent sampling times into a SMV frame. The numbers of ASDUs contained in a SMV telegram is configurable and related to the sample rate.

SIPROTEC 5 – Process Bus Definitions

IEEE1588v2/PTP	The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems. PTP was originally defined in the IEEE 1588-2002 standard, officially entitled "Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems" and published in 2002. In 2008, IEEE 1588-2008 was released as a revised standard; also known as PTP Version 2, it improves accuracy, precision and robustness but is not backward compatible with the original 2002 version.
IEEE1588v2/PTP Profiles	PTP has many optional features, and often more than one way to do things. This means PTP devices do not necessarily work together. Not unless they are configured with a compatible set of choices for 1588 options and settings. The solutions is profiles. Profiles are a set of rules which place restrictions on PTP, intended to meet the needs of a specific application or set of similar applications. The IEEE 1588 standard itself only defines one profile, referred to as the "default profile". In power industry there are two profiles used: IEC 61850-9-3 (Power Utility Profile) and C37.238-2017 (Power Profile).
PPS	Pulse per Second
CIT	Conventional Instrument Transformer
LPIT	Low Power Instrument Transformer (LPIT) – Also know as NCIT (Non Conventional Instrument Transformer). Examples are Rogowski Coil, C-Divider, R-Divider, RC-Divider, Optical sensors,
LSVS	Sampled Value Supervision

Sources: Meinberg, Wikipedia, IEC 61869, IEC 61850

Unrestricted © Siemens 2020

Page 51 January 21

Contact

Evandro de Oliveira RC-US EM EA PRO ENG

7000 Siemens Road Wendell – NC - 27591 Phone: (919) 670-8234 E-mail: evandro.Oliveira@siemens.com

Disclaimer:

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations, product names, etc. may contain trademarks or other rights of Siemens AG, its affiliated companies or third parties. Their unauthorized use may infringe the rights of the respective owner.

© Sieme<u>ns 2020</u>