To assure the effective and efficient reduction of risks to the reliability and security of the North American bulk power system

- Develop and enforce reliability standards
- Assess current and future reliability
- Analyze system events and recommend improved practices
- Encourage active participation by all stakeholders
- Accountable as ERO to regulators in the United States (FERC) and Canada (NEB and provincial governments)
The ERO Enterprise

Independence & Objectivity
Top Talent & Expertise
Collaboration with industry
Innovative & Risk-Based Programs

A Highly Reliable and Secure Bulk Power System

Effective, Efficient, Collaborative
• Pandemic Preparedness
 ▪ At this time, NERC has not identified any specific threat or degradation to the reliable operation of the bulk power system (BPS)
 ▪ However, risks are elevated with emergence of COVID-19

• Supply Chain Risks
 ▪ Three NERC Alerts related to Supply Chain issued
 ▪ Standards and Industry Partnership activity underway

• Batteries/Storage
 ▪ Battery Energy Storage Systems (BESSs) growing at increasing pace

• Distributed Energy Resources (DER)
 ▪ DER penetration impacts the Bulk Electric System (BES) in numerous ways
 ▪ Accurate modeling/measurement will be critical
Further review and consolidation has resulted in four high level risk profiles:

- **Grid Transformation**
 - A. Bulk Power System Planning
 - B. Resource Adequacy and Performance
 - C. Increased Complexity in Protection and Control Systems
 - D. Situational Awareness Challenges
 - E. Human Performance and Skilled Workforce
 - F. Changing Resource Mix

- **Extreme Natural Events**
 - A. Extreme Natural Events, Widespread Impact
 - • GMD
 - B. Other Extreme Natural Events

- **Security Risks**
 - A. Physical
 - B. Cyber
 - C. Electromagnetic Pulse

- **Critical Infrastructure Interdependencies**
 - A. Communications
 - B. Water/Wastewater
 - C. Oil
 - D. Natural Gas
• Higher penetration of renewables – variable resources
 ▪ Most are inverter-connected
 ▪ Ramping needs increase for load following
 ▪ Capacity value

• Retirement of large fossil-fired generation plants

• Changing System Inertia
 ▪ Trade-offs between inertia and Fast Frequency Response

• Emergence of distributed energy

• Changing sources of reactive support for voltage control
 ▪ Lower levels of synchronizing torque
 ▪ Increasing use of power electronics

• Increasing energy constraints from the generation fleet
Rapid Evolution of “Edge” Technologies

<table>
<thead>
<tr>
<th>Generation</th>
<th>Transmission</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter-based, variable resources</td>
<td>New market constructs</td>
<td>Distributed energy resources</td>
</tr>
<tr>
<td>Hybrid power plants and batteries</td>
<td>Changing policies and incentives</td>
<td>Aggregators</td>
</tr>
<tr>
<td>Decentralized generation</td>
<td>Updating requirements and standards</td>
<td>Advanced distribution management</td>
</tr>
<tr>
<td>Digitization and connectivity</td>
<td>Advanced and automated applications</td>
<td>Internet of Things (IoT)</td>
</tr>
<tr>
<td>New control strategies</td>
<td>Big data tools</td>
<td>Transportation electrification</td>
</tr>
<tr>
<td></td>
<td>Intelligent dispatch concepts</td>
<td>Sustainability initiatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microgrids</td>
</tr>
</tbody>
</table>
Rapid Evolution of the Energy Sector

- Inverter-Based Resources
- Distributed Energy Resources
- Hybrid Plants
- Cyber Attacks
- Internet-Connected Devices
- Electric Vehicles
- ...

Time
Planning challenges

• Traditional model out the window
 ▪ Historically Generation → Transmission → Distribution
 ▪ Emerging Generation → Transmission ↔ Distribution ← Generation
• System protection with fault levels ≈ load levels
• Adequate reactive resources
• Under frequency load shedding settings
Operating challenges

- Operator visibility into distributed energy resources
- Inverter-based resources
- Distribution impacts on transmission system
- Voltage regulation
- Under frequency load shedding
- Regulating reserves
- Cyber security of distributed energy resources
What is Limiting Wider Use of PMU Data

- Historical practices has data quality at its core
 - SCADA data used widely, highly redundant, easy to flag bad data
 - State estimation used to filter out bad data
 - Advanced applications (e.g., contingency analysis) use filtered measurements
 - Bad data is thrown out

- Synchrophasor technology used for complex use cases
 - Raw measurements used in early days with less attention to data quality than maybe was needed
 - Additional data quality considerations (e.g., time synchronization)
Oscillation tools have had success on the BPS

- Advanced applications are using wide-area measurements to detect (and identify the source of) oscillations.
- PMUs were able to pick this up and determine an oscillation was occurring.
- Tools should be able to identify the source (or close to it) in real-time and to inform operators of relevant and applicable actions to take.
- This requires a wide-area view across all RCs within an interconnection.
- Fortunately, there are projects underway to make that a reality, even in the Eastern Interconnection.
- Example includes the June 2016 and January 2019 disturbances that both resulted in the unit coming offline.
January 2019 Sustained Oscillation Event
• Data quality is critical
 • High data quality data for the control room needed, else operators will “not trust” the tools that leverage PMU
 • Having trust in the measurement source is key to a successful advanced application

• Synchrophasor data quality needs attention & improvement
 • Data availability should be near 100% (unless planned)
 • Data accuracy understood and documented (used appropriately)
 • Data quality tools on front end of all applications (screening)
 • Data quality flags/alarms built into all applications (warning)
 • Operational decisions made when data quality is high (reliable)
 • Data quality institutionalized (business processes)
High speed data is important to understand the behavior and performance of inverter-based resources:

- Data faster than PMUs is needed for point-on-wave behavior. DFRs or similar within the plant controller.
- Inverter-level oscillography is critical to understand individual inverters during severe disturbances.
Today...
Questions and Answers