High Speed Sensor Development and Deployment Panel Discussion

NASPI Panel Session November 5, 2020

- ► Tom King, Moderator and Highlight GMLC sensing activities
- Yilu Liu and Eric Zhan, University of Tennessee & ORNL: Introduction to high speed sensors, point on wave measurements and data compression
- Farnoosh Rahmatian, NuGrid Power Corp: Higher speed measurements along with supra-harmonic measurements (9 kHz – 150 kHz) with improved accuracy
- Kyle Thomas, Dominion Energy: Dominion Energy's Experience with Optical Sensors
- ► Marissa Morales, ORNL: Optical Sensor Deployment & Signature Library

Sensing and Measurement Technical Team

Key Projects and Accomplishments

- Sensing & Measurement Strategy
 - Developed state of the art document, extended grid state, sensor placement tool and created roadmap providing a foundation for the multi-year plan
- Advanced Sensor Development
 - Advancement of 13 different technologies across end-use sector, transmission & distribution and asset monitoring; six invention disclosures and 5 patents, R&D100 award; 9 publications
- Integrated Multi Scale Data Analytics and Machine Learning for the Grid
 - Develop real-time data management and data exchange frameworks that enable analytics to improve prediction and reduce uncertainty; 12 conference journals, 3 technical reports and 2 patents filed on topology detection and event analytics

Modified from Duke Energy

https://www.progress-energy.com/florida/home/safety-information/storm-safetytips/restoration.page?

High Speed Sensor Development and Deployment

- Tom King, Moderator and Highlight GMLC sensing activities
- Yilu Liu and Eric Zhan, University of Tennessee & ORNL: Introduction to high speed sensors, point on wave measurements and data compression
- Farnoosh Rahmatian, NuGrid Power Corp: Higher speed measurements along with supra-harmonic measurements (9 kHz – 150 kHz) with improved accuracy
- Kyle Thomas, Dominion Energy: Dominion Energy's Experience with Optical Sensors
- Marissa Morales, ORNL: Optical Sensor Deployment & Signature Library

High-speed Advanced Grid Measurements

Yilu Liu, UTK, ORNL Lingwei Zhan, ORNL

11/03/2020, NASPI

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Extended Universal Grid Analyzer (UGA) expanding functions

- Normal UGA
 - Synchrophasor measurement
 - Power quality parameter measurement
- Extended UGA
 - Synchrophasor measurement
 - Power quality parameter measurement
 - Point on Wave (POW) data record
 - Anomaly detection

Anomaly detection and POW record

- Anomaly detection
 - Time domain real time anomaly detection
 - 30s POW record before and after anomaly trigger
- Frame types
 - Two kinds of data / configuration frame following IEEE C37.118.2 protocol
 - The power quality parameters and POW data are put in analog data sections

Anomaly detection algorithm

Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States); 2020 Jan 10.

Data Compression in UGA

- To reduce the data stream between server and UGAs
- Two stage compression algorithm for both synchrophasor and POW data

High-speed Grid Frequency Measurement Approach: **Recursive Computation**

CAK RIDGE

CURENT

Ultra-High-Rate Algorithm evolves from the measurement algorithm used by FNET/GridEye Frequency Disturbance Recorders (FDRs) whose measurement accuracies and reliability have been proven by ~300 units deployment across the nation's grid and over 15 years field operation.

High-speed Grid Frequency Measurement Advantage: Extremely low computational cost

Extremely low computational cost

- O(1) time complexity no matter window size or data sampling rate.
- 3 orders of computation time reduction compared to popular DFT based algorithms.

Benefits

CAK RIDGE

- Measurement rate: Orders of higher grid measurement rate (kHz vs typical 60 Hz)
- Hardware friendly: easy hardware integration into grid edge devices.
- ✓ Grid Applications: enhanced grid visibility, highfrequency event detection, accurate oscillation source location, accurate RoCOF estimation, fast DER control/protection, stability predication, etc.

Number of numerical operations per estimation

Variable	Equation	count of `+` and `-`	count of `*`	count of arctan
$X_r(m), m \ge 0$	(4)	2	1	0
$X_i(m), m \ge 0$	(4)	2	1	0
$\varphi(m), m \ge 0$	(5)	0	0	1
$\varphi_{sum}(j-1), j \ge 2$	(29)	2	0	0
$\alpha_1(j), j \ge 1$	(28)	3	2	0
$f(j), j \ge 0$	(10)	1	1	0
$f_e(j), j \ge 1$	(31)	2	1	0
Total	N/A	12	6	1

Extremely Low Computation Cost

Sampling Rate	Window	Computation		
	Size (cycle)	DFT Algorithm	Proposed Algorithm	Faster
1440 Hz	5	1.279	0.002	650x
	10	2.396	0.002	1200x
	20	4.611	0.002	2300x
2880 Hz	5	2.590	0.002	1300x
	10	4.870	0.002	2400x
	20	9.240	0.002	4600x

Lingwei Zhan, ORNL. Yilu Liu, UTK/ORNL

High-speed Grid Frequency Measurement Accuracy: **Assessed Following IEEE/IEC 60255-118-1-2018**

13

Application Example: High-Frequency Event Detection

- Traditional state-of-the-art 60 measurements per second failed to capture the high-frequency oscillation due to low measurement rate.
- ✓ Ultra-high-rate frequency measurement algo successfully captured the high-frequency oscillation.

15 Hz high-frequency oscillation

Window size: 1.5 cycles

Lingwei Zhan, ORNL. Yilu Liu, UTK/ORNL

High-speed Grid Phase Angle Measurements

Recursive computation also makes high-speed phase angle measurements possible.

Sampling Rate	Window Size (cycle)	Computation Time (second)		Feeter
		classical	new	raster
1500 Hz	1	7.23	0.59	12x
	3	18.4	0.57	32x
	6	35.6	0.58	61x

How much faster in general? **Answer: 8 * N * fs** N: window size. fs: sampling rate in kHz

240x faster @6 cycles, 5 kHz. **800x** faster @10 cycles, 10 kHz.

Ignorable measurements differences between new method and classical method using real grid data

Lingwei Zhan, <u>zhanl@ornl.gov</u> Yilu Liu, <u>liu@utk.edu</u> King Thomas, <u>kingtjjr@ornl.gov</u>

Lingwei Zhan, ORNL. Yilu Liu, UTK/ORNL