Practical Use of Synchrophasor Technology in New England

ISO

new england

Xiaochuan Luo Slava Maslennikov Frankie Zhang Song Zhang THE LATE Eugene Litvinov

PMU Infrastructure at ISO New England

- Operational since 2012
- Full observability of 345 kV network
- Selected PMU data from NYISO, PJM and MISO
- December 2017: change in Operating Procedure 22 (OP-22) requiring new PMUs

✓All new 345 kV stations

 \checkmark Point Of Interconnection (POI) for all new & existing generators 100 MVA and above

Stage	Source PDC	Station	PMU	Storage Length	Storage Size
1: DOE SGIG (2009 – 2012)	7	45	73	3 years	20 TB
2: External Data (2017 – present)	10	121	227	3 years	40 TB
3: OP-22 Change (2017 – 2024)	10	~177	~300	3 years	60 TB

Synchrophasor Applications

OSCILLATION SOURCE LOCATING (OSL)

ISO-NE PUBLIC

4

Why we are concerned?

- Since 2012, 1000+ oscillatory events were observed
 - Majority of these have small magnitude 5-10 MW peak-to-peak, but few events had large magnitude > 100 MW
- Sustained oscillations (forced and poorly damped natural) can cause
 - ✓ At large magnitude : Potential uncontrolled cascading outages
 - ✓ For all magnitudes: Undesirable mechanical vibrations in system components

Catastrophic consequences of hydro-generator rotor's vibration at the Sayano–Shushenskaya power plant in 2009*

ISO-NE PUBLIC

Before and after photos of the plant turbine gallery

- 75 people died
- ✓ Large blackout
- 6400 MW power plant out of service for 3 years

* https://www.powermag.com/investigating-the-sayano-shushenskaya-hydro-power-plant-disaster/

Objective

- Need to constantly monitor the power system for the presence of sustained oscillations and promptly mitigate them
- The vast majority of observed oscillations are Forced Oscillations (FO) originating from generators and caused by
 - ✓ Failure of equipment or control systems
 - ✓ Abnormal operating conditions
- The most efficient mitigation of FO is to find the source and apply an action to eliminate the primary forcing signal
 - ✓ A number of actions available depending on situation
- The key actionable information for mitigation is finding the source of oscillation

"Source of oscillation" for ISO is a reasonable minimal part of power system (generator, power plant, load, substation, area) containing a physical source of FO and allowing to apply mitigation actions

Online Oscillations Management

Objective

- Detect all significant oscillatory events and generate Alarms/Alerts
- Estimate the Source of oscillations for every oscillatory Alarm (and Alert) generated by PhasorPoint (GE product) and deliver results to the designated personnel
- Fully automated process, operational since September 2017

The content of E-mail with OSL results

• Example of January 11, 2019 event. Email was sent in real-time, during the developing event.

Statistics of the OSL performance

- Automatically processed 1200+ oscillatory Alerts and Alarms generated by the PhasorPoint application
- Correctly identified the source (generator and area) for all instances of oscillations with known sources inside and outside of ISO-NE
- Existing Online Oscillation Management satisfies operational needs for online detection of oscillations and efficient mitigation
 - ✓ The process works in the background and automatically provides key analytical information for operations when it is needed without the need for human to monitor raw PMU data

AUTOMATIC POWER PLANT MODEL VERIFICATION (APPMV)

"PMU Playback" process

- Objective: Determine generator dynamic model accuracy
 - Confidence in generator models for all types of dynamic studies
 - Support NERC MOD-26/27
- Limitation of a typical "PMU playback": time consuming manual process
- Need an automated, online process to verify as many as possible models with every qualified system disturbance

11

- Demonstration of actual case proving wrong combined cycle generator model by using PMU playback technology
- ✓ Identification of a need to exclude specific disturbances from model validation because the model does not account for actual physical process

Often model validation online serves as early detection of equipment failure/malfunctioning

Batch Power Plant Model Verification (BPPMV)

Input

- ✓ Disturbance parameters
- ✓ Generators to validate
- ✓ PMU at POI
- ✓ SCADA for multi-generator power plants

Process

- ✓ Pull PMU and SCADA data
- ✓ Set the initial conditions
- $\checkmark~$ Run playback simulation in TSAT
- ✓ Generate plots and Key Performance Indices (KPI)

Request Selected Generators	Cancel Selected Generators	Disturbance Date & Time (Local Time Zone)	Run	Program Running Status		
Request All Generators	Cancel All Generators	mm/dd/yyyy	Plot Comparison			
All Generator List	Requested Generator List	HH:MM:SS	for Selected			
		(HH.MM.SS)	Run Analysis for Selected			
		Case Memo	Oscillation Analysis Window (Leave blank for automatic detection) Start Time (sec) 0 End Time (sec) 0			
			()			
		File Path Selection	Close All Plots	(Browse)	(load)	Parameter Settings
		File Path Selection tsat_batch exe Path:	Close All Plots Select Path for tsat_batch.exe Select Path for PSAT.exe	Browse	Load	Parameter Settings
		File Path Selection tsat_batch exe Path PSAT.exe Path. Dynamic Model Path:	Close All Plots Select Path for tsat_batch.exe Select Path for PSAT.exe Select Path for Dynamic Model Files	Browse Browse Browse	Load Load Load	Parameter Settings Set User Parameter
		File Path Selection tsat_batch exe Path: PSAT.exe Path: Dynamic Model Path: Zipped, PFB Path:	Close All Plots Select Path for tsat_batch.exe Select Path for PSAT.exe Select Path for Dynamic Model Files Select Path for Zip File of Power Flow File	Browse Browse Browse Browse	Load Load Load Load	Parameter Settings Set User Paramete
		File Path Selection Itsat_batch.exe Path: PSAT.exe Path: Dynamic Model Path: Zipped.PFB Path: Mapping Table Path.	Close All Plots Select Path for (sat_batch.exe Select Path for PSAT.exe Select Path for Dynamic Model Files Select Path for Zip File of Power Filow File Select Path for Mapping Table File	Browse Browse Browse Browse Browse Browse Browse	Load Load Load Load Load	Parameter Settings

APPMV Results – example of Email

Results Analysis - KPI

- Key Performance Indices (KPI) are based on engineering quantities and parameters of transient
- Analysis based on multiple events (New in 2020, under integration)
 - Designed an event database and overall Scoring System

EMERGENCY DISPATCH

Objective

- Emergency scenario: loss of SCADA and/or major EMS functions
- ISO-NE's emergency operation procedure MLCC/21 requires "man staffing" all key substations and dispatchable units
 - ✓ Field staff manually read the field measurements to the ISO's control room via secure phone calls
 - ✓ ISO provides manual dispatch instructions via secure phone calls by using approximately calculated MW dispatch quantities
- Potential issues of the existing emergency dispatch
 - ✓ Subject to human error
 - ✓ Time skew of field measurements and dispatch instructions

Need to utilize PMU infrastructure, which is independent from SCADA, for automated and efficient backup emergency dispatch

PMU-based Emergency Generation Dispatch

- PMU data are used instead of manual reading from field staff
- PMU data is used to calculate the Area Control Error (ACE) instead of SCADA

$$ACE = (P_{tie}^{schedule} - P_{tie(p)}) + 10B(f_{area}^{schedule} - f_{area(p)})$$

• An optimization procedure calculates dispatch instructions for available dispatchable generators

$$\min \sum c_i \Delta P_i$$

s.t.
$$\sum \Delta P_i = \Delta L(T) - ACE$$
$$\left|\frac{\Delta P_i}{R_i}\right| \le T$$
$$P_{min} \le P_i^0 + \Delta P_i \le P_{max}$$

i	 PMU monitored generators
ci	generator incremental cost
ΔP_i	 generator delta dispatch amount
P_i^0	generator output
Ť	dispatch look ahead time (5 minutes)
R_i	generation ramp rate
ΔL	short term forecasted load change
Pmin Pmar	generator economic minimum and maximum operating limits

PMU-based Emergency Operation Options

• Emergency scenario: loss of SCADA and/or major EMS functions

Type of Control	ED network is available	ED network is unavailable
PMU-based AGC	Yes (every 4 sec)	No
PMU-based Emergency Dispatch for PMU monitored units only	Yes; automated delivery dispatch instructions (every 5 10 min)	Yes; manual delivery dispatch instructions over phone

ISO-NE PUBLIC

18

* ED stands for Electronic Dispatch

SERIES-CAPACITOR AND LINE PARAMETER ESTIMATION

(USE CASES)

Line Parameters Estimation

• Parameters of a transmission line monitored by PMU from both ends can be estimated, but the accuracy of the estimation is a concern

• Due to PMU errors, calculation of R could be unreliable; X and Y values are reasonable

20

Series-Capacitor (SC) Parameter Estimation

 SC impedance can be estimated at the change of topology: "SC off" → "SC on" or "SC on" → "SC off"; X_{line} is estimated from PMU 1&2

$$X_{SC} = X_{line}^{SC \ on} - X_{line}^{SC \ off}$$

Questions

ISO-NE PUBLIC

22