Practical Use of Synchrophasor Technology in New England

Xiaochuan Luo
Slava Maslennikov
Frankie Zhang
Song Zhang
The Late Eugene Litvinov
PMU Infrastructure at ISO New England

- Operational since 2012
- Full observability of 345 kV network
- Selected PMU data from NYISO, PJM and MISO
- December 2017: change in Operating Procedure 22 (OP-22) requiring new PMUs
 - All new 345 kV stations
 - Point Of Interconnection (POI) for all new & existing generators 100 MVA and above

<table>
<thead>
<tr>
<th>Stage</th>
<th>Source PDC</th>
<th>Station</th>
<th>PMU</th>
<th>Storage Length</th>
<th>Storage Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: DOE SGIG (2009 – 2012)</td>
<td>7</td>
<td>45</td>
<td>73</td>
<td>3 years</td>
<td>20 TB</td>
</tr>
<tr>
<td>2: External Data (2017 – present)</td>
<td>10</td>
<td>121</td>
<td>227</td>
<td>3 years</td>
<td>40 TB</td>
</tr>
<tr>
<td>3: OP-22 Change (2017 – 2024)</td>
<td>10</td>
<td>~177</td>
<td>~300</td>
<td>3 years</td>
<td>60 TB</td>
</tr>
</tbody>
</table>
Synchrophasor Applications

- Real-time Voltage Stability Monitoring
- Emergency Dispatch using PMU Data
- Event Detection, Visualization, Historian
- Oscillation Source Locating
- Offline Study
- Multiple Data Sources

- LSE
- ISD
- DQMS
- PhasorPoint
- RVII
- DSA
- APPMV
- OSL
- PhasorAnalytics

- Real-time PMU Data Quality Check
- Hybrid EMS State Estimation
- Model Validation

- Dispatch
OSCILLATION SOURCE LOCATING (OSL)
Why we are concerned?

• Since 2012, 1000+ oscillatory events were observed
 ✓ Majority of these have small magnitude 5-10 MW peak-to-peak, but few events had large magnitude > 100 MW

• Sustained oscillations (forced and poorly damped natural) can cause
 ✓ At large magnitude: Potential uncontrolled cascading outages
 ✓ For all magnitudes: Undesirable mechanical vibrations in system components

Catastrophic consequences of hydro-generator rotor’s vibration at the Sayano–Shushenskaya power plant in 2009*

Before and after photos of the plant turbine gallery

✓ 75 people died
✓ Large blackout
✓ 6400 MW power plant out of service for 3 years

* https://www.powermag.com/investigating-the-sayano-shushenskaya-hydro-power-plant-disaster/
Objective

• Need to constantly monitor the power system for the presence of sustained oscillations and promptly mitigate them

• The vast majority of observed oscillations are Forced Oscillations (FO) originating from generators and caused by
 ✓ Failure of equipment or control systems
 ✓ Abnormal operating conditions

• The most efficient mitigation of FO is to find the source and apply an action to eliminate the primary forcing signal
 ✓ A number of actions available depending on situation

• The key actionable information for mitigation is finding the source of oscillation

“Source of oscillation” for ISO is a reasonable minimal part of power system (generator, power plant, load, substation, area) containing a physical source of FO and allowing to apply mitigation actions
Online Oscillations Management

Objective

- **Detect** all significant oscillatory events and generate Alarms/Alerts
- **Estimate the Source** of oscillations for every oscillatory Alarm (and Alert) generated by PhasorPoint (GE product) and deliver results to the designated personnel
- Fully automated process, operational since September 2017
The content of E-mail with OSL results

- Example of January 11, 2019 event. Email was sent in real-time, during the developing event.

Results of DE pattern recognition
- PMU only from ISO-NE footprint are used
- That allows to identify that the Source:
 ✓ Is located outside and
 ✓ In NYISO direction

* Dissipating Energy (DE)
Statistics of the OSL performance

- Automatically processed **1200+** oscillatory Alerts and Alarms generated by the PhasorPoint application
- **Correctly** identified the source (generator and area) for all instances of oscillations with known sources **inside** and **outside** of ISO-NE

- **Existing Online Oscillation Management** satisfies operational needs for online **detection** of oscillations and efficient **mitigation**
 - The process works in the **background** and automatically provides key analytical information for operations when it is needed without the need for human to monitor raw PMU data
AUTOMATIC POWER PLANT MODEL VERIFICATION (APPMV)
“PMU Playback” process

- Objective: Determine generator dynamic model accuracy
 - Confidence in generator models for all types of dynamic studies
 - Support NERC MOD-26/27
- Limitation of a typical “PMU playback”: time consuming manual process
- Need an automated, online process to verify as many as possible models with every qualified system disturbance

- Live since 2018
 - Demonstration of actual case proving wrong combined cycle generator model by using PMU playback technology
 - Identification of a need to exclude specific disturbances from model validation because the model does not account for actual physical process

Often model validation online serves as early detection of equipment failure/malfunctioning
Batch Power Plant Model Verification (BPPMV)

Input
- Disturbance parameters
- Generators to validate
- PMU at POI
- SCADA for multi-generator power plants

Process
- Pull PMU and SCADA data
- Set the initial conditions
- Run playback simulation in TSAT
- Generate plots and Key Performance Indices (KPI)
APP MV Results – example of Email

New in 2020:
- Improved event selection process
- The same generator can have several models

List of Verified Plant Models

Plots for Each Model
Results Analysis - KPI

- Key Performance Indices (KPI) are based on engineering quantities and parameters of transient

- Analysis based on multiple events *(New in 2020, under integration)*
 - Designed an event database and overall Scoring System
EMERGENCY DISPATCH
Objective

• Emergency scenario: loss of SCADA and/or major EMS functions

• ISO-NE’s emergency operation procedure MLCC/21 requires “man staffing” all key substations and dispatchable units
 ✓ Field staff manually read the field measurements to the ISO’s control room via secure phone calls
 ✓ ISO provides manual dispatch instructions via secure phone calls by using approximately calculated MW dispatch quantities

• Potential issues of the existing emergency dispatch
 ✓ Subject to human error
 ✓ Time skew of field measurements and dispatch instructions

Need to utilize PMU infrastructure, which is independent from SCADA, for automated and efficient backup emergency dispatch
PMU-based Emergency Generation Dispatch

• PMU data are used instead of manual reading from field staff
• PMU data is used to calculate the Area Control Error (ACE) instead of SCADA

\[
ACE = (P_{\text{tie schedule}} - P_{\text{tie(p)}}) + 10B(f_{\text{area schedule}} - f_{\text{area (p)}})
\]

• An optimization procedure calculates dispatch instructions for available dispatchable generators

\[
\begin{align*}
\min & \sum c_i \Delta P_i \\
\text{s.t.} & \sum \Delta P_i = \Delta L(T) - ACE \\
& \left| \frac{\Delta P_i}{R_i} \right| \leq T \\
& P_{\text{min}} \leq P_i + \Delta P_i \leq P_{\text{max}}
\end{align*}
\]

- i -- PMU monitored generators
- c_i -- generator incremental cost
- ΔP_i -- generator delta dispatch amount
- P_i^0 -- generator output
- T -- dispatch look ahead time (5 minutes)
- R_i -- generation ramp rate
- ΔL -- short term forecasted load change
- $P_{\text{min}}, P_{\text{max}}$ -- generator economic minimum and maximum operating limits
PMU-based Emergency Operation Options

- Emergency scenario: loss of SCADA and/or major EMS functions

<table>
<thead>
<tr>
<th>Type of Control</th>
<th>ED network is available</th>
<th>ED network is unavailable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU-based AGC</td>
<td>Yes (every 4 sec)</td>
<td>No</td>
</tr>
<tr>
<td>PMU-based Emergency Dispatch for PMU monitored units only</td>
<td>Yes; automated delivery dispatch instructions (every 5... 10 min)</td>
<td>Yes; manual delivery dispatch instructions over phone</td>
</tr>
</tbody>
</table>

ED stands for Electronic Dispatch
SERIES-CAPACITOR AND LINE PARAMETER ESTIMATION

(USE CASES)
Line Parameters Estimation

• Parameters of a transmission line monitored by PMU from both ends can be estimated, but the accuracy of the estimation is a concern

\[
\bar{V}_1 - \bar{V}_2 = (R + jX)(\bar{I}_1 - \bar{V}_1)
\]

\[
\bar{V}_2 - \bar{V}_1 = (R + jX)(\bar{I}_2 - \bar{V}_2)
\]

Calculate R, X, Y_g, Y_b for every PMU measurement

• Due to PMU errors, calculation of R could be unreliable; X and Y values are reasonable

![Graph showing line parameters estimated from PMU data and nominal parameters with a negative R highlighted.]}
Series-Capacitor (SC) Parameter Estimation

- SC impedance can be estimated at the change of topology: “SC off” \rightarrow “SC on” or “SC on” \rightarrow “SC off”; X_{line} is estimated from PMU 1&2

$$X_{SC} = X_{SC \; on} - X_{SC \; off}$$
Questions