DOE/OE Transmission Reliability Program

Real Time Applications Using Linear State Estimation Technology (RTA/LSE)

Ken Martin

Electric Power Group martin@electricpowergroup.com NASPI November 4, 2020 Webex

Electric Power Group

Introduction

- Project: Real Time Applications Using Linear State Estimation Technology
 - DOE Grant Award DE-OE0000849
- Primary recipient: Electric Power Group, LLC
- Project Partners (host site & cost share):
 - Bonneville Power Administration
 - New York Power Authority
- Added project host site
 - Duke Energy

Advisors & observers

- Project Advisors
 - Anjan Bose Washington State University
 - Ian Dobson Iowa State University
 - Dejan Sobajic Grid Engineering
 - Anurag Srivastava Washington State University
- Project Observers
 - Dominion Virginia Power (Dominion) Kyle Thomas
 - Peak Reliability Hongming Zhang
 - PJM Emanuel Bernabeu, Ryan Nice

Project approach

- Implement 3 applications to monitor power system
- Test with simulated and recorded data
- Demonstrate at host utilities

REAL-TIME CONTINGENCY ANALYSIS (RTCA)

Methodology

- Uses a base case (power flow model) as input and updates the observable area using *e*LSE results
- Run all contingencies from a list using Power flow solution (FDLF/NR)
- Detect voltage & power flow limit violations
- Use full system model covering utility with surrounding connections
- Challenges

BONNEVILLE

- Base case may not match current system
- Obtaining accurate results with small number of PMU measurements

Electric Power Group

RTCA Results Visualization

VOLTAGE STABILITY INDEX (VSI)

Transmission Corridor VSI

- Uses PMU measurements of V & I at both ends of a transmission corridor to compute complex power
- Computes a stability index that is simply the voltage across the system divided by the load voltage
- Limits are set based on local limitations

BONNEVILLE

 Technique will handle a transmission corridor with a network of lines and multiple input and output points

Electric Power Group

VSI configuration example (BPA)

- Establish VSI limits based on various severe contingencies
- For BPA, used maximum generator & DC intertie
 - Example Loss of Two Palo Verde Units

	Loading	Malin Voltage	VSI
1	Base Case (3807 MW)	514.8 kV	16.61
2	4353 MW	504.8 kV	19.11
3	4667 MW	493.7 kV	21.21
4	4917 MW	480.2 kV	23.38
5	5125 MW	472.5 kV	24.87
6	5150 MW	471.5 kV	25.03
7	5160 MW	466.6 kV	25.93
8	5205 MW	NA	Diverges

Alarm levels were determined:

- Alert: 19
- Alarm: 23

Electric Power Group.

VSI Visualization in Real-Time

(Loss of 2 Palo Verde Units with 4667 MW initial loading on corridor)

AREA ANGLE MONITORING (AAM)

Monitor Power Transfer Stress using Angle Difference

 θ_{ab} – angle difference between *a* and *b* P_{ab} – power flow from *a* to *b* $P_{ab,max}$ –maximum power flow from *a* to *b*

• Scenario 1: *P*_{*ab*} increases.

when P_{ab} increases, θ_{ab} increases proportionally, indicating the increased stress of power flow. The maximum power flow $P_{ab,max}$ does not change.

Scenario 2: Line 1 is tripped and P_{ab} does not change.

Line 1 trips, $P_{ab,max}$ decreases and θ_{ab} increases.

Angle difference can indicate the increase of stress caused by either increased power flow or line outage.

Electric Power Group

Area Angle Monitoring (AAM)

Area angle [1],[2] generalizes angle difference between buses to angle difference across an area. The stress of bulk power transfer through the area is indicated by a weighted combination of phase angles at the boundary buses of this area.

$$\theta_{area} = w_1 \ \theta_1 + w_2 \ \theta_2 + \ldots + w_m \ \theta_m$$

Implementation of AAM

[2] W. Ju, I. Dobson, K. Martin, et al, "Real-time area angle monitoring using synchrophasors: a practical framework and utility deployment," *IEEE Trans. Smart Grid*, DOI:10.1109/TSG.2020.3020790.

Electric Power Group

NewYork Power

BONNEVILLE

Visualization of AAM On RTDMS Client

- Monitor an area in BPA
- Contingency: Loss of John day–Grizzly #1 and #2 and the line Grizzly–Malin

Applications Benefits

- RTCA Improves Situational Awareness & provides Actionable
 Intelligence
 - Based on *e*LSE which always solves
- Provides Backup to Conventional RTCA
- VSI covers transmission corridors rather than specific lines
 - Covers less well defined transmission flows
- Area angle can track the bulk power stress due to line outages inside the area using synchrophasor measurements.
 - It is approximate but faster when compared with SCADA and state estimation.
 - It is associated with a particular pattern of power flow through the area, which allows thresholds for area to be set up.

Electric Power Group

BONNEVILLE

Project status

- Project completed in March 2020
- Demonstration was made 2019 & early 2020
- Implementations completed in June 2019
 - BPA in June 2019
 - NYPA and Duke in summer 2020
- Final technical report in October 2020
- Due to the pandemic we have not been able to proceed with further testing or gathering of data from events

Looking Forward

- To achieve the most benefit, EPG plans to:
 - Gather data from participant utilities & analyze operations
 - Upgrade applications as needed for reliable operation
- Incorporate developed applications into products:
 - VSI and AAM into RTDMS operations
 - RTCA into complete platform including Cascading Analysis and Optimal Remedial Action

Utility Operation Risk Assessment

Real Time Contingency Analysis (RTCA)

- Checks what-if situations during normal operations
- Prepares for the next problem that can result from unforeseen events

Cascading Analysis

Operators need to be advised of cascading risks just the same as other contingencies

Optimal Remedial Action

- Operators can be overwhelmed during a major outage situation
- Optimal Remedial Action can offer a list of actions that will alleviate contingencies and include warning for other consequences

Architecture of RTCA, Cascading Analysis, and Optimal Remedial Action

- Enhanced RTCA
- Cascading Analysis

Thank You!

Questions ?

• Best wishes from The Electric Power Group

