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Low Frequency Oscillations
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Synchrophasor-Based Wide Area Oscillations Damping Controller
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* Improved Damping of Target Inter-area/Intra-area Oscillations Mode
e Application of Synchrophasor Technology in Closed Loop Wide Area Control
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WADC Case Studies

Mode #2

& E _{STATCOM

* Study using planning models - 2017 event replicated in simulations
* Two dominant modes - WADC design

* ‘West-North’ mode
» ‘West-South’ mode

 Actuators: Marcy STATCOM and
Niagara generators

— Actuators: 2 synchronous
condensers in South Italy

— Input: South-North frequency
difference
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WADC Hardware-In-the-Loop Implementation
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‘J‘E’Ide-Area Communication
Damping Controller Network Impairment
(WADC) Simulator

[ Investigate Controller Performance Under Realistic Operating Conditions J

WwWw.epri.com © 2020 Electric Power Researc h Institute, Inc. All rights reserve d. '—PEI | ;;iiLR;gHP?NV:ﬂ?TUTE


http://www.epri.com/

WADC Hardware-In-the-Loop Setup

Model Implementation Controller Implementation
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- Grid Model in Digital Simulator e Hardware: National Instrument’s
Format CompactRIO
—_RTDS RSCAD * PMU Data Receiver: IEEE C37.118
— OPAL-RT ePHASORSIM * WADC Structure

« Comparison with Offline * D/A Converter
Simulations *Visualization GUI
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Hardware Implementation of WADC

1 PMU data receiver Unpack PMU data package complying with C37.118
Basic —~ 2 Lead-lag structure Basic control function
modules
u 3 D/A conversion Convert digital signal to analog signal
B 4  GPS module Capture absolute timestamp
5 Delay detector Estimate the time delay
Advanced . : :
— 6 Delay compensator Eliminate impact of time delay
modules
7  Supervisory control Switch PMU channel, enable/disable controller
8 Oscillation detector Disable controller if no oscillation
Oscillation
v detector

PMU data

-

receiver

D/A

Delay detector g €200 g Delay

structure compensator
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WADC with Backup PMU Channels and Backup Actuators

= Distributed control
structure with multiple
PMUs and multiple

Control Center

Supervisory Control
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Forced Oscillations Mitigation

= Forced Oscillation Source Location

= Use of Battery Energy Storage Systems
(BESS) and/or IBRs to suppress

magnitude of forced oscillations Yes Source No
Located?

— If source cannot be located quickly, activate
control to reduce forced oscillation energy

— Allow sufficient time to locate source
Activate control to

mitigate oscillations

In collaboration with University
Tennessee Knoxville (UTK)
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Forced Oscillation Mitigation Using BESS

Controller

—Input: Frequency deviation
of a HV bus close to the
BESS

— Output: Added to Paux to
modulate the active
current command

— Forced oscillation detector
— Droop control

WECC BESS model used

— Active power control of the
BESS electrical control
model
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Replication of El January 2019 Forced Oscillation Event

= Fast valving feature of the TGOV3 model used to replicate the event
= Initiate fast valve every 4 seconds
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Ty [VAR(L+1)]:  TIME to imitiate fast valving.

TA [CONJ+8)]:  Intercept valve, v, fully closed TA
seconds after fast valving initiation.

TR [CON(I+9)):  Intercept valve starts to reopen TR
seconds after fast valving initiation.
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Te [CONI+10)): Intercept valve again fully open Te
seconds after fast valving initiation.
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Simulation Results

= Source location: Florida
= BESS location: Florida

No Control With Control With Control
(1x409MW BESS in Florida) (12x35MW BESSs in Florida)
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Sub-Synchronous Oscillations due to Inverter Controls

= Inverter controls might create sub-synchronous oscillations due to control interactions
and/or network resonance

= Such oscillations are usually in the frequency band of 5.0-15.0 Hz
California GB August 2019 Event

~ 8Hz oscillations observed at Hornsea wind park
PV Plant — ~7 Hz Oscillation reactive power after a 2% voltage step change
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PMU Emulator, A Tool to Investigate Impact of PMU Signal
Processing

Synchrophasor

* PMU Emulator Sim?Jflglc?oenEPl\g-CrAD Time-Domain Application
- | Signals C37.118

provides “simulated i s o S
——— _pmu

Synchrophasors” by . .
applying PMU signal '

processing model to

phasors and time- Al w9 a e
domain signals from [T S
dynamic and EMT rocor frea Recor e

simulation tools
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Magnitude (kV)

PMU Limitations in Monitoring Fast Dynamics in Low Inertia Systems

=Signal processing within a PMU might compromise the accuracy of
the monitored oscillations
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true RMS of input signal
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Together...Shaping the Future of Electricity
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