Dominion Energye

Automated Generator Model
Calibration with PredictiveGrid

Chen Wang, Kevin D. Jones, Chetan Mishra (Dominion Energy)
Luigi Vanfiretti, Giuseppe Laera, Marcelo de Castro (RPI)

Project Overview

Joint effort of Dominion Energy Electric
Transmission with Rensselaer Polytechnic Institute
(RPI).

Project aims at using streaming synchrophasor data on
PredictiveGrid platform to automatically calibrate
modularized generator models including controllers.

Generator models are built using Modelica and
exported using the FMI standard.

Python and Jupyter Notebook to combine the data
guery and the optimized model parameters calibration
process.

Energy-

9 Dominion
=

PingThings

Dominion
Energy

w

Dominion’s Needs for Model Calibration

e Dominion uses the same models used for planning
and control design

e Modeling challenges
O Conventional model validation require events happening but
system mostly in ambient conditions.
O Operation conditions change throughout the day due to changing
nature of load, line switching, V setpoint change, etc.
o Existing model needs to be updated due to unmodeled dynamics.
o Difficult to do when models and data are segregated.

Frequency [Hz)

e Vision: Data-driven modeling with PredictiveGrid and

Modelica
O Quickly accessible synchrophasor data. 8 g A A 2 2 N
0 Portable model modules for various generator stations with Voltage Magnitude Spectrogram at

enhanced functionalities to match to data (linearization). Unmodeled Generating Unit

O Quickly do model validation and calibration “on-demand” to
support planning and operation tasks.

Dominion
Energy’

\\

PredictiveGrid

[carms |

[commrane |

SCADA

| Pi Historian |

((osvd.0)

Network Model Data

Meta Data

Analytics

Access Use Cases

Data Visualization

o3l wrna imerace otz
Explocation

i 3 B &f

e -
= Energy

PingThings W5

e AT L e o o) v v WAREA R
L]
ey
@ - - E e = o] w - - = s i wm
e er= =T =

Dominion
Energy’

\\

/ Components Model Library \

(OpenlPSL + RPI development)

Generator:
GENROU, GENROE, ...

AVR:
AC7B, ACEB, ESST4B, ESSTIA, ...

PSs:
P5524A, PS52B, ...

Turbine Governor:
IEEEG1, GAST, ...

Compensator:
IEEEVC, ...

Form Up

Envisioned Toolchain (Design)

Library of FMUs for \

Dominion generators

FMU
(Gen A at Dominion)

FMU
(Gen B at Dominion)

FMU
(Gen C at Dominion)

1 4

”

B

/, Python Library for Model
Calibration

| PredictiveGrid Data Adaption

|
| Signal Pre-Processing E
|

| FMU Simulation

| simulation Resutts ¢

Parameter Calibration

\ (optimization process) /

CallFMU

Executable

python
functions

s

Jupyter Notebooks
(Dominion Application)

N

PredictiveGrid:
Synchrophasor Data Query

/ Jupyter Notebooks \

(Model Calibration)

PredictiveGrid:
Synchrophasor Data Input
(Ambient Data,
Small Disturbances,
Large Transients)

l

Signal Processing

A

|

| FMU Parameters Calibration E

!

\| FMU Parameters Output f/

Calibrated Generator Model ‘

o

\\

5

minion
nergy’

The Modelica Language and the OpenIPSL Library
for Power System Modeling and Simulation

Non-proprietary, object-oriented,

equation-based ¢
Modelica

modeling language

for cyber physical systems . o Language
Open access (no paywall) & standardized
language specification (link), maintained by the
Modelica Association

Open source Modelica Standard Library with
more than 1,600 components models.
Supported by 9 tools natively, both proprietary
(Dymola, Modelon Impact, etc.) and Open
Source (OpenModelica)

A vast number of proprietary and open-source
Modelica Libraries

LA

e OpenlPSL is an open-source Modelica library for

(@)

(@)

{
(@)

power systems that:

Contains a vast number of power system
components for phasor time domain modeling
and simulation of power systems (transmission
and distribution)

Several models have been verified against a
number of reference tools (PSS/E, PSAT).

OpenlIPSL enables:

Unambiguous model exchange, use of model in
Modelica-compliant tools.

Formal mathematical description, no
discretization w.r.t. specific integration method.
Separation of models from tools and solvers.
Using Dymola, as fast* as PSS/E (link).

g -
Z Bominer

https://github.com/modelica/ModelicaSpecification
https://www.modelica.org/association
https://mbe.modelica.university/components/packages/msl/
http://dymola.com
https://www.modelon.com/modelon-impact/
https://www.openmodelica.org/
https://modelica.org/libraries
https://github.com/openipsl
https://ep.liu.se/ecp/article.asp?issue=157&article=050&volume=

OpenIPSL Library and Example

equation
[nterfacing outputs with the internal variables
XADIFD = XadIfd
ISORCE = Xadlfd
EFDO = efdd
PMECHO = pm0

ot
4Epa _ _1_[EFD-Xadifd
v D Machines dz? Tpd0
dEpd 1 .
= —L_[1|Xaqn
(] psar d1 quo[) s
v [] psse APSIkd _ __ 1 _[poo psicd - [Xpd—x1|id
dif Tppdd
j] GENSAL !
dPSlkq _ 1 [Epd—PS]kq+[qu—X1)iq)
{] aenrou df Tppad
Te = PSId-iq—PSlIq-id

constantLosd

PSId = PSlppd—Xppd-id
Pslg = (-PSIppq) ~Xppq iq
PSIppd = Epg -K3d +PSIkd -K4d

—PSIppq = (—Epd-K3q) —PSIkq-K4q
PSIpp = 4PSIppd -PSlppd + PSlppq -PSIppg
Xadlfd = K1d-{Epq—PSIkd — (Xpd —X1)id) + Epg

Xaglly = Klg -{Epd —PSIkq + {qu —Xl|ig| +Epd
J/fchange sign for PSIppg 3/3
ud = (—PSIq) —Ra-id

ugq = PSId-Ra-iq
{flow

ROE

7 +id-{Xd - Xpd) + SE_exp (PSIpp, 510,512, 1, 1.2) PSIppd
SE_exp (PSIpp, $10,512,1,1.2) (-1) PSIppq - (Xq —X1)

—iq-[Xq—qu)— Xd-X1

The Functional Mockup Interface Standard -fm' Mock-Up

FMI is an open access standard, also from the Modelica
Association.

It defines a container and an interface to exchange dynamic
models using a combination of XML files, binaries and C
code zipped into a single file, called a Functional Mock-up
Unit (FMU) or .fmu.

CS

Supported by simulation 100+ tools!

FMI supports model export in two modes Co-Simulation (CS)
and Model Exchange (ME)
e With a Model Exchange FMU, the numerical solver is
supplied by the importing tool. The solver in the importing
tool will determine what time steps to use, and how to
compute the states at the next time step. ME
e With a Co-Simulation FMU, the numerical solver is
embedded and supplied by the exporting tool. The
importing tool sets the inputs, tells the FMU to step
forward a given time, and then reads the outputs

Functional
Interface
Master Tool Slave FMUs
FMU
—(O | Model | Solver |
FMI
Tool
FMU
—(C | Model Solver |
FMI
FMU
—(O Model
Tool FMI
Solver
FMU
O

w

Dominion
Energy

https://fmi-standard.org/downloads/
https://fmi-standard.org/tools/

Integrating Models in
PredictiveGrid

e Challenge: Typical generator plant models are isolated in
simulation tool (PSS/E):

. . . L]
o Limited to in-built E—@—l
capabilities of the tool
P =]

o Not possible to deploy
existing PSS/E model in PredictiveGrid platform.

e Solution: use Modelica and FMI to create a portable
model! However, the models needed were not available
in OpenlPSL.

e Approach:
o Implement the model in Modelica and verify against PSS/E.
o If results are the same, export Modelica model as an FMU
o Deploy model in platform and build toolchain for model
calibration:
e Use Python functionalities to integrate the model.
e Use Python and Jupyter notebooks to build calibration
“notebook”

SW-to-SW verification of the plant model
(PSS@E vs. Modelica)

1

Export Modelica model as FMU with source
code

1

Predictive Grid Integration:
Import measurements data
Implement signal processing of PMU data
Integrate the FMU by coupling model I/O
data
Integrate tools for model calibration, i.e.
optimization-based prrameter estimation.

Manually Update PSS/E Model Data
(Could also be automated)

Dominion
Energy

\\

Models for Software-to-Software Verification

Plant configuration of the reference PSS@E model

Modelica Implementation using the OpenlPSL Library

Plant Name Generator AVR PSS Turbine Turbine Generator
Governor governor — Z—‘ (GENROE)
Y,
WC STO1 GENROE ESST1A PSS2A IEEEG1 (IEEEA) oo
GEN1 LOA(t|ENZ
SMIB test system diagram in PSS@E . ’I—g
(GENO1 = WC STO1) . | e
LOAD GENDZ g‘
| N— gz 2: I_~ cur;'ét. J‘;
ol oo 2 | 2 o o] | :
! Faur Power System o T 4 —
10 00 00 I 0 00 Stabilizer T
. 00 00 00 00 K=
e) , (PSS2A)

Excitation system

WC ST01 (ESST1A)

10

Dominion
Energy

w

Verification: Modelica (Dymola SW) vs PSS/E

Test: 3-phase fault to ground applied to bus FAULT of the test system at t=2sec for 0.15sec

Terminal voltage magnitude of generating unit WC STO1

1.10 4

1.05 A

1.00

Voltage [pu]

0.95 4

0.90 4

—— VGenl PSS/E
=== WGenl Dymola

Normalized Absolute Error

0.00015 ~

0.00010 A

0.00005 A

0.00000 A

RMSE=0.0215

o -

2 4 6
Time [s]

Active power of generating unit WC ST01

0.4 1

0.3 1

Power [pu]

0.2 4

A~

—— PGenl PS5/E
—-—- PGenl Dymola

Normalized Absolute Error

0.0003 4

0.0002 4

0.0001 4

0.0000 +

RMSE=0.0518

Time [s]

11

Dominion
Energy

w

Modelica Model for PMU-data Replay and FMI Export
e Model configuration of WC STO1 for FMU export:

System Data
System Base: 10..

1 | oome vorge-10. R W Legend
- g 1. Record with system data
F’ IEEEG1, | ka Ji" 2. Blocks with power flow data as a
2 parameter.
) 3. Controlled voltage source
p ‘ 3) 4. Generator model (GENROE)
4 | ceneoe B “ @:4 5. Turbine Governor model (IEEEG1)
6 vreal 6. Power System Stabilizer model
F’ —|< (PSS2A)
- L 7. Automatic Voltage Regulator model
_ b=l 9 (ESST1A)
T 8. Model interfaces giving the output
7L, | active and reactive power of the

Inputs for measurements

E ol IT_.4E:_| S generator (4)
Consi _Ej i 9-
k=Wa..

12 L.
Dominion

Energy

w

Modelica/FMI Model Calibration: modest”

e [ModestPy is an Open Source Python tool for parameter estimation.

e Developed by the University of Southern Denmark, compatible with Python 3 and possible to use in
Linux (platform requirement).

e |t facilitates parameter estimation in models compliant with Functional Mock-up Interface (FMI)
standard. That means it works with both CS and ME FMUSs!

e |t uses a combination of global and local search methods (genetic algorithm, pattern search, truncated
Newton method, L-BFGS-B, sequential least squares) that can be applied in a sequentially.

e For our proof-of-concept we have used a Co-Simulation FMU of the plant exported with source code to
allow for its use on the platform.
o The CS FMU showed a more stable behavior on the PingThings platform

13 L.
Dominion
Energy

w

https://github.com/sdu-cfei/modest-py
https://fmi-standard.org/

Signal Processing

Data is retrieved
e PMU stream is selected
Time window is selected
e Sampling frequency is determined

Data is prepared
e Data passes a high pass filter (very low
frequencies removed)
e Data passess a low pass filter (noise)
e Data is resampled (match time step of solver)

Final Signals for Model Coupling
e Current and voltage magnitudes and angles
become phasors in per unit
e Calculated, positive sequence V, |, P and Q.
e Real and imag. parts of voltage are extracted

Determining data:

sub_line_list = [['

i Sub-station
Name and
Voltage
Level

nline = le

sub_line list)

Got all streans

All_Streams = getstreams DFR{conn, [sub_line list[ii][0] for ii in range{nline)],
[sub_line list[ii][2] for ii im range(nline)],
[sub_line list[ii])[3) for ii im range({nline)],
[sub_line_list[ii][1] for ii im range(nline)])

All_Streams = [All Streams[i][sub_line list[i][4]] for i in range(nline)]

basevals = get_base(conn,All Streams)

Time window

T window = 1+*60 # window =ize in seconds

tstart = datetime(2020, &, 26, 20, 58, 0, 0).timestamp()*led

trange = np.array([tstart,tstart+T window*le3]) # time window

fs = 30.0 # sampling freguency
Get data
fdatamat_pre,tdata = ExtractData resample 2(conn, All Streanms, '', trange(0), trange[l], 1/fs, basevals)

def pre_process_2(datamat tdat,fs,f_filter):
mean = [np.mean{datamat[ii))*np.ones(np.shape(datamat[ii])) fer ii im range|len(datamat))]
Pre-Process
datamat_process = [(np.array(datamat[ii])-np.mean(datamat[ii]}).tolist() for ii in range(len(datamat))]
datamat_process = butter_filter(datamat_process, high',f_filter[0],fs) # detrend
datamat_process = butter_ filter(datamat process, low',f _filter[l).fs) # denocise
add mean again
datamat process (np.array(datanat_process)+mean).tolist()
if £ filter[1] < £a/2:

dowr 3

fs_re = 2*f filter(l]

tdat_re = np.arange(tdat[0],tdat[-1],le%/fs_re}# down sample

datamat_process = [resample_data(datamat_process[i],tdat,tdat_re) for i in range(len(datamat_process)))
else:

tdat_re = tdat

£s_re = fs
return datamat_process,tdat_re,fs_re

#emm Fi datar

£ filter = [0.01,15])
fdatamat,tdata_re,fs_re = pre process_2(fdatamat_pre, tdata,fs, f_filter)

14

Dominion
Energy

w

Model and Toolchain Integration

Import a specific user defined library for connection to the 1

platform and retrieve data

o | from Chetan_libe2 import *
‘J conn = btrdb.connect("internal.api.dominion.predictivegrid

L

import time

Import standard Python modules for mathematical calculations, data W inport nunpy as np
processing and ModestPy tool after its installation

import os
import pandas as pd

from modestpy import Estimation
‘J from modestpy.utilities.sysarch import get_sys_arch

from modestpy.fmi.model import Model
import matplotlib.pyplot as plt

L

[Instantiation of the FMU]———>

L

import seaborn as sns

Instantiate FMU
fmu_file = "WC_STOl.fmu
model = Model(fmu_file)

[Defining inputs/outputs after signal processing

L

[Defining parameters to be estimated

ideal - ideal.setr_index('time')

Load definition of estimated parameters (name, initial value, bounds)
est = {'eSST1A1.K_A':(1.26,1.,1.5),
'eSST1A1.T_A':(1.4e-86,1.82-6,0.0001),

)
)

L

|

Defining estimation |

'Pe.k': (183660800 ,183000600. ,184006000),
Q8. k' (-)}

- Tstimatien]

v

algorithms and settings J

15

Dominion
Energy

Testing: Parameter Estimation Under Ambient Conditions

After a linear analysis of the plant, it has been noticed that the exciter could contribute to the
anomalous behavior.

Therefore, an estimation of the voltage regulator gain Ka and time constant Ta and the steady state
active (P0) and reactive power (Q0), has been performed for ambient conditions.

GA Algorithm Nelder-Mead Error
- [1054 — eSSTIALK A - \ o
POk oo 1:0.: | \/_ N) ‘ 0.80 IIII
Q@ 0000 1 A — ga.:n |
L E S0000 \ — E

eSSTIALK A

eS5TIALT A 0f v

Rerat
°°°°° 0 10] 0 4 E &0 70 80
1 H 10 — terations
Generation

“—>
GA Nelder-Mead

Sequence of algorithms used for the estimation

—
>

estimation elapsed time = 1431s

16

Dominion
Energy

w

Testing: Parameter Estimation Under a Transient

e The estimation of the voltage regulator gain Ka and time constant Ta, active (P0) and reactive
power (Q0), has been performed for transient conditions..

GA algorithm

RMSE}

Erron

estimation elapsed time = 447s

6
\ —— eSSTIALK A
4
0.250 / —
0.225) €SSTIALT A
1= - -
1835 n l,.—’_/\—‘-l_ — POk
vV
1830 . ﬂ'l ™\
e T
~3,425 /_\—/\ — 0k
~3.430
os{ _— orr
LAY
-8 " * W o o *» *
Iteration

Error
| — ammor #1
||
\|
\\
(N
GA Nelder-Mead

Sequence of algorithms used for the estimation

Lsan 122
08561
1835 POk
1830 . L L] L] L oase0
28 e
.
L | B 08550
29 Qo.k
08558
30 5
14 08557
eSETIALK A
12 !
09556
10 * - - # [} i
000010
08555
0.00005 «SSTIALT A
08554
000000 E B—
o 13 8 10 —
Generatio

Dominion
Energy

\\

Proof-of-Concept: Parameter Estimation Results for 4 parameters

From the results, the exciter gain Ka (uncalibrated value 160) keeps a value of the same order of magnitude in
both scenarios whereas the time constant Ta (uncalibrated value 0.029s) has a difference of several orders of
magnitude.
More parameters for different parts of the model need to be included (e.g. turbine, PSS, etc).
More scenarios and different combinations of parameters will be tested since the preliminary results could also be

affected by correlation between parameters.

Power [pu]

2.0

Power [pul

-0.10

-0.12 4
—-0.14 1
—0.16 4
—-0.18

-0.20

Calibration for Ambient

-
o
L

=
o
L

—— Pout_meas
=== Pout_calib

A A - A .
" i A \ n "Ny " v
RV A A Y A Y ALY A VAV ALY RV RNV

—— Qout_meas
=== Qout_calib

0 200 400 600 800 1000
Number of points (Time interval = 10s)

estimates

18

Power [pu]

Power [pu]

]
L%}
L

=
o
L

0.2 A

0.0 4

Calibration for Transient Event

[
(=]
L

-y
ow

\ = Pout_meas
I'I === Pout_calib
]

! ’
A\
f\ [Py
- A -~ - - -
- R S N
~ A, Nt N -

I

‘\] ~s
A\
-

p'| —— Qout_meas
I === Qout_calib
1
n
i
1
11
:;L:(—_Iz wd e T T e T T e e e == T =
LY
0 100 200 300 400 500

Number of points (Time interval = 5s)

estimates

{"eS5T1A1.K_A": 2.6426586177827225,
"eS5T1A1.T_A': 8.24553453816063393,
"P.k': 182758836.3976619,

"Q8.k': -34307843.88675239}

{'eS5T1AL.K_A": 1.8379577488856557,
'eS5T1AL.T_A': 2.2885494426998525e-86,
'Pe.k’: 183@52847.85619538,

‘Qe.k’: -26788844.37874680}

Dominion
Energy

w

Conclusions and Future Work

e Open access, standards-based, portable and reusable modeling using Modelica and FMI:
o Open access, interoperable standards for modeling exchange provide model portability — new implemented models
in OpenlIPSL can now be used by Dominion (and others!) for multiple tasks.
o Modelica and FMI standards provide great benefits for integration with modern platforms (e.g. cloud).
o Model portability provides the flexibility to perform any type of simulation analysis without a specific tool dependency.

e PredictiveGrid Platform:
o Availability of Python tools (i.e. ModestPy), allowed for quickly prototyping a new solution.
o Custom Python routines for signal processing to couple models with data were also implemented.
o This new prototype has helped identify feature enhancements and new functionalities needed in the platform to
facilitate quicker development of new applications (e.g. AWS instance resources for optimization).

Proof of concept successfully implemented:
Results show great promise for automation for model calibration within a synchrophasor utility platform.
Provides a framework that can be generalized for any other generator stations, FACTS devices, etc.
Open source tools (i.e. ModestPy) minimized development effort (no need to reinvent the wheel!)
Need to develop methods and tools for parameter selection and correlation analysis.

O O O O

Future work: enhance prototype and expand coverage for other stations in Dominion’s grid; implement
new applications based on the developed models.

19 L.
Dominion

Energy

w

Thank you!

O\

20

	Dominion Energy®�����
���Chen Wang, Kevin D. Jones, Chetan Mishra (Dominion Energy)
Luigi Vanfretti, Giuseppe Laera, Marcelo de Castro (RPI)�
	Project Overview
	Dominion’s Needs for Model Calibration
	PredictiveGrid
	Envisioned Toolchain (Design)
	The Modelica Language and the OpenIPSL Library �for Power System Modeling and Simulation
	OpenIPSL Library and Example
	The Functional Mockup Interface Standard
	Integrating Models in
PredictiveGrid
	Models for Software-to-Software Verification
	Verification: Modelica (Dymola SW) vs PSS/E
	Modelica Model for PMU-data Replay and FMI Export
	Modelica/FMI Model Calibration:
	Signal Processing
	Model and Toolchain Integration
	Testing: Parameter Estimation Under Ambient Conditions
	Testing: Parameter Estimation Under a Transient
	Proof-of-Concept: Parameter Estimation Results for 4 parameters
	Conclusions and Future Work
	����Thank you!

