

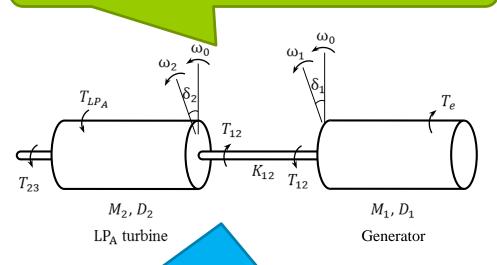
Power System Oscillations & ESAMS

Shaun Murphy

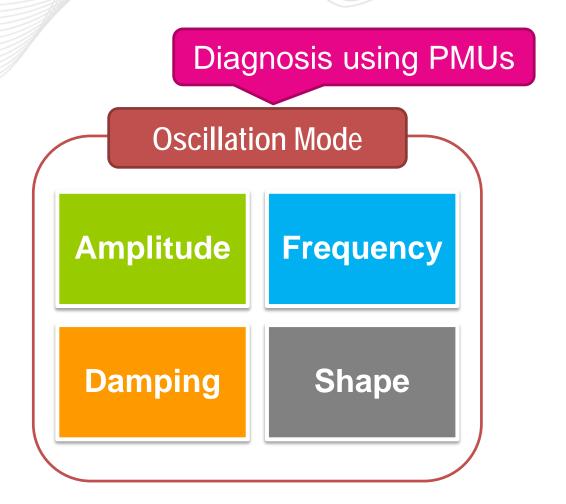
Sr. Engineer, Applied Innovation

Subbarao Eedupuganti

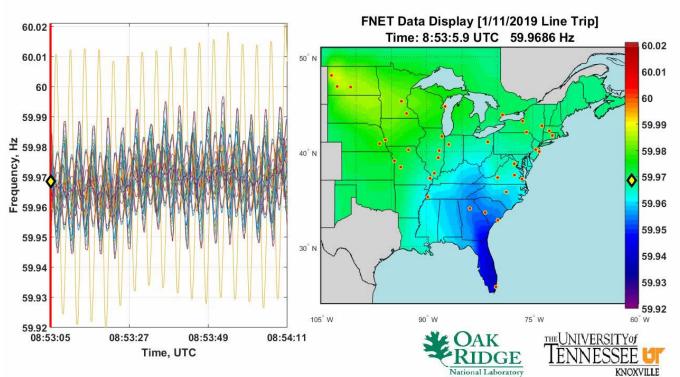
Sr. Engineer, Outage Analysis Technologies



- Introduction
- Eastern Interconnection Data Sharing Network (EIDSN)
- Oscillation Detection at PJM
- Eastern Interconnection Situational Awareness Monitoring System (ESAMS)
- Conclusion

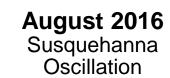


Electromechanical oscillations: interaction of rotating masses



Complex function of: system strength, inertia, load, controllers, etc.

Introduction



0.25 Hz (Inter-Area) South and North-West of PJM

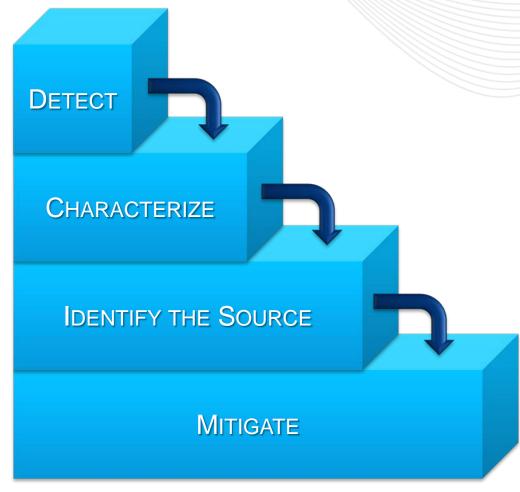
April 2011 Surry Oscillation November 2016 Farley Oscillation FRCC Oscillation

Eastern Interconnection Data Sharing Network (EIDSN)

- Data sharing network built to replace NERCnet
- Built for sharing real-time data between Balancing Authorities for situational awareness
 - SCADA
 - Synchrophasors
- Master agreement streamlines the data privacy / non-disclosure process

Oscillation Detection in Operations (Real Time Dynamics Monitoring System - RTDMS):

Oscillation detection -


- RTDMS has algorithms to detect major system oscillations and categorize the type (forced, local, and inter-area) based on frequency.
- RTDMS can detect oscillations in system voltage, voltage angle or voltage angle derivative, <u>real</u> and reactive power flow signals.
- Based upon the oscillation frequency, it will detect and categorize the oscillations in 4 bands:
 Speed Governor, Inter-area, Local Control System, and Torsional Dynamics.

Mode Meter monitoring -

Monitors known oscillations (natural/system) and can also provide mode shape.

Real Time Oscillation Detection

- Operator training
- Notifications/alerts for operators
- Coordination with members and external BAs
- Data exchange between BAs (EIDSN*)
- Widespread PMU coverage for oscillation characterization and source localization
 - External tie-lines to find if the source is within our footprint or outside our footprint
 - Internal tie-lines to find member/TO area when the source is with-in our foot print (find smallest possible area)
 - Other geographic area (tie-lines) to find source far from our footprint as much as if possible.

Eastern Interconnection Situational Awareness Monitoring System (ESAMS)

DOE Prototype Demonstration Project ESAMS

Overall Project Objective:

To introduce a common, high-level interconnection-wide view based on Synchrophasor information in order to foster discussion within and among Eastern Interconnection operating entities

Key Elements of the initial high-level view will include:

- 1. Detect and identify forced and natural oscillations
- 2. Monitor phase angle pairs and identify when values are outside of normal operating ranges
- 3. Detect atypical behavior from an ensemble of measurements and identify which ones are contributing to the atypicality

Information Delivery Methods (by subscription):

Emailed reports (daily, weekly, monthly)

DOE Prototype Demonstration Project ESAMS

Continuation of CERTS baselining project with:

- LBNL and PNNL
- PJM, NYISO, ISONE and MISO
- EPG

Coming soon to a BA near you!

Goal: Create a prototype oscillation detection and baselining tool for a large portion of the Eastern Interconnection

Focus on information sharing

Challenges in Wide-Area Localization

- Direct extension of existing methods would require:
 - Streaming data for every PMU-monitored generation plant
 - Analyzing data for every PMU-monitored generation plant
 - Centralized one-line diagrams
- Severely limited in regions with low penetration of PMUs

Sample Report

Summary (Eastern Daylight Time)

Issue	Event Time	Additional Information
Natural Oscillation		
EPG RTDMS® -Mode metering		
algorithm		No natural oscillation event detected
Stressed Angle Pair	00:00-01:38	2 stressed angle pair(s) detected
	Time for event with the	Angle pair with the longest time under stress:
EPG method-Statistical analysis	longest time under stress	Angle Pair:
Wide Area Disturbance	05:39	4 disturbance event(s) detected
	Time for event with the	Key info for event with the most angle pairs participating:
	most angle pairs	Number of Angle Pairs participating: 2
EPG method-Control chart analysis	participating	Most sensitive angle pair during the event:
Ringdown Detection	00:07-00:12	15 ringdown event(s) detected
PNNL Oscillation Tool-Advanced	Time for event with the	List of angle pair(s) for event with the earliest time:
spectral analysis	earliest event time	F at missitus assential detected
Anomaly Detection	08:36	5 atypicality event(s) detected
	Time for event with the	List of angle pair(s) contributed most to the event with the most angle pairs participating:
	most angle pairs	
PNNL tool-Multivariate analysis	participating	
Forced Oscillation	23:42-23:53	3 forced oscillation event(s) detected
		Key info fo <u>r event with highest energy:</u>
EPG RTDMS®-Mode metering		Signal: Type: Real Power
algorithm PNNL periodogram-	Time for event with	• Frequency: 1 Hz • Value: 7.732 MW
based sinusoid detector PMU Data Availability	highest energy	Source Area: Unconfigured Area
. IIIO Data Availability		
EPG DataNXT® -Six modules		
approach		

- Prototype will provide a cohesive view of the Eastern Interconnection
- Fast alerting with actionable information:
 - Mode parameters <u>including mode shape</u>
 - EI → BA Location → BA zone(s)
 - Dissipating Energy Flow
- Oscillations affect the entire interconnection. Operators from different BAs must view and collaborate on a shared information set.
- Transition to EIDSN application portal
- Shared (rotating) monitoring responsibility similar to time error correction monitor

Questions?