

Deep Learning Application for Power Grid Event Detection and Classification

April 25, 2019

Tianzhixi Yin, Brett Amidan

Applied Statistics and Computational Modeling Group

PNNL is operated by Battelle for the U.S. Department of Energy PNNL-SA-140555

Outline

PNNL Big Data Pathway

Aircraft safety Morning Report w/ NASA

Analytics Using State Estimator Data w/ El

Constant (ΘQ	SEL-451	SEL	· • •
, territor			CONTRACTOR NO.	
) 100			H - 338.2	
airean (- 60.00	
))			n - 348.3	

Data Investigations Using PMU Data (uncovering data quality issues, etc.)

GMLC, ESAMS, and Beyond Machine learning basis Many additional data streams **Predictive analytics**

DISAT mmimm -

Data Integrity **S**ituational Awareness Tool (PMU Data Analytics w/ BPA)

ESAMS – Eastern Interconnect Situational **Awareness Monitoring System**

Project Objective:

To introduce a common, high-level interconnection-wide view based on synchrophasor information

- Detect and identify forced and natural oscillations
- Monitor wide area phase angle pairs and identify when values are outside of normal ranges
- Detect current atypical behavior based upon baselining previous behavior
- Recently installed at PJM

Research Questions

- Will deep learning be useful for PMU data analytics?
 - Since it has been successful in so many areas...
- Which deep learning technique and how to implement?
 - Convolutional neural network (CNN) vs. Recurrent neural network (RNN) (Long shortterm memory (LSTM))
 - What kind of data preprocessing do we need for PMU data to be used by deep learning?
- What are the advantages and disadvantages of deep learning compared to traditional feature-based time series machine learning for PMU data?

PMU Data

- Obtained from Western Interconnect;
- 2016 to present;
- 12 PMUs;
- Hundreds of events.

Event Detection and Classification Steps

Feature-based Machine Learning

- Feature extraction: "16 signature elements" (Amidan and Ferryman 2005).
- The goal is to capture the essential information of a time series while reducing dimensionality.
- Quadratic Regression: $y = a + b x + c x^2 + \varepsilon$
 - Maximum,
 - mean,
 - minimum,
 - and standard deviation of a, b, c, ε.

yman 2005). s while reducing

8

Feature-based Machine Learning

- Gradient boosting machine (GBM).
- Relies on the extracted features as inputs.
- An ensemble of weak learners to form a stronger learner.
- Weak learners are typically decision trees.
- Fitting on residuals of previous learners.

9

Deep Learning: CNN vs LSTM

- Convolutional neural network (CNN) vs. Long short-term memory (LSTM)
- Theoretically, LSTM fits time series data better since it focuses on temporal correlation;
- However, practically, CNN works better for PMU data!
- PMU data has high sampling rate;
- 1-dimensional CNN is very good at capturing patterns (shapes) of PMU data.

Convolutional Neural Network Model in this Study

Convolutional Layer

Image

Convolved Feature

- Filters (or kernels) stride through the data to create feature mapping;
- Detects specific features at some spatial (or temporal) position in the data;
- Automatic feature generation.

Source: hackernoon.com

- A form of down-sampling;
- The exact location of a feature is not very important;
- Reduce overfitting;
- Deeper layers learn bigger picture.

Convolved Pooled feature feature

Source: hackernoon.com

Results (10-fold cross validation)

	CNN (Deep Learning)	GBM (Machine Leari
Step 1 (Normal vs. Events)	95.5% ± 2.8%	95.0% ± 2.5
Step 2 (A, B vs. C)	96.2% ± 2.0%	96.5% ± 2.0
Step 3 (A vs. B)	97.4% ± 2.3%	96.6% ± 1.7

1. Results are overall accuracy. Sensitivity and specificity are quite similar.

2. Results are based on 487 events from over 1 year of PMU data.

Deep Learning Conclusions

- Deep learning provides automatic feature extraction, while machine learning needs features to be already engineered and extracted;
- Deep learning is more complicated to implement with various structure options and more hyper-parameter tuning;
- Deep learning is more difficult to converge, have to try different optimizers and learning rates;
- However, deep learning has a greater potential to fit more power grid applications because of its ability to adapt to unseen problems;
- Future work: focus on applying DL for multiple-channel PMU data.

Thank you

Questions?

