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Data
Investigations
Aircraft safety Analytics Using Using PMU Data
Morning Report State Estimator (uncovering data
w/ NASA Data guality issues,
w/ El etc.)

/

GMLC, ESAMS, and Beyond | (PMU Data
Machine learning basis = | % Analytics w/ BPA)

Many additional data streams
Predictive analytics
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Project Objective:

Forced Oscillation _| Amplitude
Detection “| Estimation

Reporting

PMU Data —>

To introduce a common, high-level
interconnection-wide view based on

synchrophasor information e K
 Detect and identify forced and natural o o
oscillations e

* Monitor wide area phase angle pairs
and identify when values are outside of
normal ranges

g8 & 8 2

» Detect current atypical behavior based
upon baselining previous behavior

* Recently installed at PJM
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 Will deep learning be useful for PMU data analytics?
= Since it has been successful in so many areas...

* \WWhich deep learning technique and how to implement?

= Convolutional neural network (CNN) vs. Recurrent neural network (RNN) (Long short-
term memory (LSTM))

= What kind of data preprocessing do we need for PMU data to be used by deep
learning?

 \What are the advantages and disadvantages of deep learning compared to
traditional feature-based time series machine learning for PMU data?
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PMU Data

Obtained from Western
Interconnect;

2016 to present;
12 PMUSs;
Hundreds of events.
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e Feature extraction: “16 signature elements” (Amidan and Ferryman 2005).

 The goal Iis to capture the essential information of a time series while reducing
dimensionality.

 Quadratic Regression:y=a+bx+cx*+ €
= Maximum, .
= mean,
= minimum,
= and standard deviation of a, b, c, €.
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e Gradient boosting machine (GBM).

* Relies on the extracted features as inputs.

 An ensemble of weak learners to form a stronger learner.
* \Weak learners are typically decision trees.

 Fitting on residuals of previous learners.
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e Convolutional neural network (CNN) vs. Long short-term memory (LSTM)

e Theoretically, LSTM fits time series data better since it focuses on temporal
correlation;

 However, practically, CNN works better for PMU data!

 PMU data has high sampling rate,
* 1-dimensional CNN is very good at capturing patterns (shapes) of PMU data.
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Convolutional RelU Layer

= =R
iViax Fooling
Lavfer - Sigmﬂid
= Layer
4: :"’,— F _:f'F i —

— Class 1

— Class 2
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Image

Source: hackernoon.com

Convolved
Feature

Filters (or kernels) stride through the
data to create feature mapping;

Detects specific features at some
spatial (or temporal) position in the
data;

Automatic feature generation.
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« Deeper layers learn bigger picture.

Pooled
feature

Convolved
feature
Source: hackernoon.com
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CNN GBM
(Deep Learning) (Machine Learning)
(Normjt\?g. Ilzvents) 95.5% £ 2.8% 95.0% + 2.5%
(A,Sée\?s_zc) 96.2% + 2.0% 96.5% + 2.0%
(:t\?s? g) 97.4% + 2.3% 96.6% + 1.7%

1. Results are overall accuracy. Sensitivity and specificity are quite similar.
2. Results are based on 487 events from over 1 year of PMU data.
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 Deep learning provides automatic feature extraction, while machine
earning needs features to be already engineered and extracted;

* Deep learning is more complicated to implement with various structure options
and more hyper-parameter tuning;

* Deep learning is more difficult to converge, have to try different optimizers and
earning rates;

 However, deep learning has a greater potential to fit more power grid
applications because of its ability to adapt to unseen problems;

e Future work: focus on applying DL for multiple-channel PMU data.
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