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Introduction

 Founded in Dec. 2013 in Santa Clara, California, USA (www.geirina.net)

 Conducts cross-disciplinary R&D for power system modernization

 R&D subsidiary and overseas platform of State Grid Corporation of China

 ~50 Researchers and Engineers (70-80 in summer)

 Mentored over 60 graduate students in the past 3 years

Research Groups & Areas

 Graph computing & Grid Modernization

 AI & System Analytics

 Advanced Computing & Data Intelligence

 Smart Chips

GEIRI North America (GEIRINA)
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http://www.geirina.net/


Exhibit
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Grid Sense: IoT+X Leveraging 

edge computing for enhanced 

system SA and control

System architecture: edge computing

Edge device: smart outlet

Cloud platform

GEIRINA Grid Eye: SA platform that 

has been running in the provincial/state-

level system for the past 36 months

Situational awareness: alarming & data visualization

Parameter/data calibration 

Oscillation detection and location

Data exploration & stability tracking

GEIRINA Grid Mind: Data-driven 

autonomous grid dispatch and control 

platform with self-learning capability

DRL: deep learning + reinforcement learning

Ability to handle faster grid dynamics

Sub-second autonomous dispatch & control 

Self-learning with grid interaction capabilities

*For more information, please check: www.geirina.net/research/2



Outline
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• Background and motivation

• Autonomous grid dispatch and control based on PMU measurements

• Deep Reinforcement Learning

• Autonomous voltage control

• Demo

• How to architect/tune an effective self-learning agent?

• Discussion/other applications



Grand challenges: the increasing dynamics 
and stochastics in the modern power grid, 
making it difficult to design and implement 
optimal control actions in real time 

• Increased penetration of renewable energy
•Demand response
•New market behavior
• Energy storage
• Experience/model based control 

suggestions using limited studied cases are 
either conservative or risky for operation

Need for accurate and fast wide-area 
monitoring system to detect potential issues

• PMU coverage is increasing, but still limited
• Known data quality issues affect apps
• Lack of preventive measures to mitigate 

operational risks
Need for effective optimal control 
suggestions in real time to support operators

•Most operational rules are offline determined
• Either by experiences or projected simulations

Challenges

The well-known 
Californian duck 
curves showing 
abrupt changes in 
system net load

System fast dynamic 
responses under 
extreme events – the 
August 2003 North 
American Blackout
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Credit: California ISO / 

Jordan Wirfs-Brock
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• Past efforts were mostly focused on enhancing/increasing grid situational awareness using advanced 

modeling, various data analysis approaches, machine learning, etc.

• Very few WAMS apps can instruct operators what to do in real time due to the lack of effective 

approaches that can transform massive amount of measurements directly into actionable decisions in 

real time.

Updated every 

fraction of a sec.

Conducted by machine(s) in 

fraction of sec. to seconds.

Operators are HARDLY 

involved; decision making 

from seconds to mins.

 Potential apps of WAMS are limited, and GEIRINA wish to bridge this gap.

 On Sept. 25 2018, DOE announced investments to improve resilience and 

reliability of the nation’s energy infrastructure using PMU measurements 

and big data, AI, machine learning technologies.

 “…to inform and shape development and application of fast grid analytics and 

sub-second automatic control actions that preclude costly cascading grid outages”

 “…PMU-based automated controls, better grid asset management, and real time 

monitoring for modeling…”

Power SystemsPMUs

Synchrophasor 

measurements

Perception Comprehension Projection

Situational Awareness

Decision Action

Real-time decisions/actions 

are very difficult, if any, only 

for post-event analysis.

The Gap



Goal: To develop a tool that can transform massive amount of 

measurements into actionable decisions in real time.

The Grid Mind Vision

• Grid Mind: A measurement-driven, grid-interactive, self-evolving, and open
platform for power system autonomous dispatch and control.

 In the short term, we want to duplicate an example of AlphaGo Zero in power systems.

 In the mid-term, Grid Mind serves as an assistant to grid operators.

 In the long term, Grid Mind will be the core of power system operation ROBOT. 

Power SystemsPMUs

Synchrophasor 

measurements

Perception Comprehension Projection

Situational Awareness

Decision Action

Now

Goal / Future

Power Systems

ActionGrid Eye Grid Mind

SCADA

WAMS

Situational 

awareness
Decision making

Linear/hybrid 

SE

Grid States

Operator 

experience

Offline training 

using HPC

Reinforcement/

feedback

Execute in sub-second

Image, 

Video, text, 

etc.
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• Background and motivation

• Autonomous grid dispatch and control based on PMU measurements

• Deep Reinforcement Learning

• Autonomous voltage control

• Demo

• How to architect/tune an effective self-learning agent?

• Discussion/Other applications



ML in a Nutshell

Supervised 
Learning

In                 Out

error
target

labeled 
data

Application

 Classification

 Predict a target 

numeric value

Common Algorithms

o k-Nearest Neighbors

o Linear Regression

o Decision Trees

o Naïve Bayes

o SVM

o Neural Networks

Unsupervised 
Learning

unlabeled 
data

Application

 Clustering

 Visualization

 Dimensionality 

reduction

 Anomaly detection

Common Algorithms

o k-Means

o Hierarchical Cluster 

Analysis

o Principal Component 

Analysis

In                 Out In                 Out

reward 

& state

environment

Reinforcement 
Learning

Application

 DeepMind’s AlphaGo

 Fire-extinguish robots

 Grid Mind

Common Algorithms

o Dynamic programming

o Monte Carlo

o Temporal Difference 

(TD)

 Q-Learning

 SARSA

Semi-supervised 
Learning

many unlabeled & 
few labeled data

Application

 Google Photos

Webpage classification

Common Algorithms

o Combination of 

unsupervised and 

supervised learning

In                 Out
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Reinforcement Learning (RL)

 Learn what to do and how to map situation to action.

Step in and stayMilk bone

Poppy

Observe
Route,

location, 

material,

my tone…

Agent

Environment

action
rewardstates

 The RL system: agent and environment. At 

each time step t :

• The agent 

1) executes action at

2) observes states st

3) receives a scalar reward rt 

• The environment 

1) receives action at

2) emits states st+1   

3) issues a reward rt+1 

 Reinforcement function

• Trial-and-error interactions

• Mapping states/action pair to reinforcement

• Maximization of the sum of reward/value 

 Poppy’s example.
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RL Agent

 An RL agent may include one or more of the following components:

• Policy: agent’s behavior function

A map from state to action

o Deterministic policy

o Stochastic policy

• Value function: prediction of future reward

How much reward can be obtained if I perform action a in state s

• Model: agent’s representation of the environment

 Q-value function gives expected total reward

 from state s and action a

 under policy π

with discount factor γ

 An optimal value function is the maximum achievable value

11



Q-Learning
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Example: Mouse vs Cliff1

1https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

Blue-mouse

Red-cliff

Green-cheese

Q Table

Q(S,A)          Q(3,2) +2.49

Neural Net
s0

s1

s2

s3

s4

a0

a1

a2

a3

0

0

0

0

1

-0.53

+0.62

+2.49

+4.32

Q(S,A)          Q(3,2) +2.49

position/location{up, down, right, left}

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/


Deep Learning in a Nutshell

• Deep learning is a general-purpose framework for representation learning

• Given an objective

• Learn representation that is required to achieve objective

• Directly from raw inputs

• Using minimal domain knowledge

• Represent the world using nested hierarchy of concepts (each using simpler ones)

Source: https://towardsdatascience.com

.
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Deep Reinforcement Learning (DRL)

 DRL=DL+RL

 DL is a general-purpose framework for representation learning

 RL is a general-purpose framework for decision-making in a dynamic 
environment

 We seek a single agent that can solve a human-level task

• RL defines the objective

• DL gives the mechanism

• RL+DL   general intelligence

 Use deep neural networks to represent

• Value function

• Policy

• Model

.
14
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• Background and motivation

• Autonomous grid dispatch and control based on PMU measurements

• Deep Reinforcement Learning

• Autonomous voltage control

• Demo

• How to architect/tune an effective self-learning agent?

• Discussion/Other applications



Autonomous Voltage Control (AVC)
(Considering load variation, renewable intermittency and contingency conditions)

 Change generator voltage set point

 Switchable shunts on & off

 Adjust transformer tap ratios 

Objective:
Maintain steady-state voltages at all buses within the range of 0.95-1.05pu after 

disturbance(s) or contingencies from any given initial operating point.

Voltage 

Controller

Bus 

Voltages

All buses 

stay within 

a secure 

range

Increasing complexity, e.g., renewable energies

Increasing scale, e.g., wide-area power systems

High nonlinearity, e.g., nonlinear loads

Fast response speed, e.g., power electronics

Challenges for 
conventional 
technologies
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DRL Formulation for AVC 

Firstly, let’s define Vi as the voltage phasor of bus i (including both magnitude and phase angle).

Control objective

All Vi ’s (of interest) stay within normal operation zone

Generator voltage 

set points

[0.95, 0.975, 1.0, 

1.025, 1.05] ,

Shunt cap value, 

transformer tap, 

etc.

Vi of buses 

of interest

P, Q of 

branches

App of Grid Mind

Power System

DRL

17



AVC Training Algorithm
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Control objective

All Vi ’s (of interest) stay within normal operation zone

Generator voltage set 

points

DQN (discrete): [0.95, 

0.975, 1.0, 1.025, 1.05]

DDPG (continuous): 

0.95-1.05

Vi of buses 

of interest

P, Q of 

branches
App of Grid Mind

Power System

Supervisor 

Verification

 Suggested 

action 

Expected 

performance

Implement 

control action
Power GridGrid Simulator

Off-line 

training

On-line 

training

Grid Mind (DRL Agent)
Control action

State & 

Reward

           

    
    
     

   
 

 
 
 

DRL agent for AVC

DQN: 

Calculate control action 

using a=argmaxQ(s|θν) with 

decaying ε-greedy policy 

DDPG: 

Calculate control action 

using a=μ(s|θμ) with 

decaying random noises  

Action
Environment

State
 

Update DRL agent

 ( , ) ( , ) max ', ' ( , )Q s a Q s a R Q s a Q s a      

DQN:

DDPG:

 
1

( , ) |aJ Q s a s
N

 



 
    

Reward 



DRL Formulation for Voltage Control-Reward 

1.0

1.05

0.95

1.25

0.8

Large penalty

Negative reward

Negative reward

Large penalty

Normal operation zone

Violation zone

Violation zone

Diverged solution

Diverged solution

Buses of interest in a power system

V
o

lt
ag

e 
m

a
g
n
it

u
d
e
 i
n

 p
u

Final Reward =Sum(Reward)/number of iterations
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Case Study
Testing Condition

•IEEE 14-bus System

•10k episodes (created randomly)

•60%~120% random load change 

•A single-NN DQN agent

•2 layers with 20 neurons/layer

•Without using regularization

•120 action space (permutation of 5 
choices)

20

Testing system: IEEE 14-Bus system

System Info.

• 14 buses

• 5 generators

• 11 loads

• 17 lines

• 3 transformers

• Active load: 259 MW

• Reactive load: 73.5 MVAr

So it learns from the scratch

1. Initializing the probability of using 

random control actions to be 

pr(0)=1

2. for Episode i

3. pr(i+1)=0.95pr(i)

Note: Grid Mind does not know the model of 

the system or its electrical parameters.



DQN Agent for IEEE 14-bus System

60%-120% random load changes are applied to each episode

Either no violations 

or 1 iteration step

2 iteration steps

R
ew

ar
d

R
ew

ar
d

Learning from scratch Test on 10k new cases

3 iteration steps

4 iteration steps

5 iteration steps

After 10,000 episodes’ learning, the designed DQN agent starts to master the voltage 

control problem by making decisions autonomously.

Episode Episode
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A Closer Look at the Results

Either no violations 

or one action taken

Two actions taken

R
ew

ar
d

Episode

Four actions taken

Five actions taken

60%-120% random 

system load changes

States – Bus Voltage (Episode 8 and 5000)

Actions – Vset (Episode 8 and 5000)

Three actions taken

22
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Discrete vs Continuous Action Space

QL:

Time k

Environment Agent
state k

reward k

action k

Time k+1

state k+1

reward k+1
action k-1

Max Max

DQN: using multiple layers of nonlinear process units
(neural network) for feature extraction and transformation;
Using value function to select action (e.g., ε-greedy)

Continuous state (Q-

Network) & discrete 

action a=argmaxQ(s|θν)

Discrete state (Q-Table) 

& discrete action 

(a=argmaxQ(s|θν))

RL: interaction between 

agent and environment

DL (DNN): policy and 

Q-function updating

DDPG: using one deep neural network for actor and
another one for critic. The action is directly generated by
actor based on the value from critic.

Continuous state (Q-

Network) & continuous 

action a=μ(s|θμ)
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DDPG Agent for IEEE 14-bus System

60%-120% random load changes are applied to each episode

After 6,000 episodes’ learning, the designed DDPG agent starts to master the voltage 

control problem by making decisions autonomously.

Either no violations 

or 1 iteration step

2 iteration steps

R
ew

ar
d

R
ew

ar
d

Learning from scratch Test on 10k new cases

3 iteration steps

4 iteration steps

5 iteration steps

Episode Episode



DQN and DDPG Agents for 200-bus System

Regional voltage control is 

considered for DQN agent:

5 adjacent generators with 30 

interconnected buses in the 

neighborhood subsystem
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60%-120% random load changes are applied to each episode

After 10,000 episodes’ learning, the designed DRL agents start to master the voltage 

control problem in the 200-bus system by making decisions autonomously.

Training Testing

No violation or one 

iteration step

Two iteration steps

Three iteration steps

Four iteration steps

More than five 

iteration steps

Training Testing

DQN Agent

DDPG Agent

Episodes

E
p

is
o

d
es

 R
ew

a
rd

s
E

p
is

o
d
es

 R
ew

a
rd

s

No violation or one 

iteration step

Two iteration steps

Three iteration steps

Four iteration steps

More than five 

iteration steps



Further Testing Results-200 Bus System
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• Test the DRL agent under different loading conditions: heavily loaded, fully loaded, 

and lightly loaded. 

• Consider different topological changes. For example, random line tripping 

contingency or N-1 conditions.

DQN; 60%-140%; Enforcing Q limitDDPG; 60%-140; Enforcing Q limit

3 iteration steps

4 iteration steps

More than 5 

iteration steps

2 iteration steps

x104 x104

Either no violation 

or 1 iteration step

Episode Episode

Observations:
1. The designed agents work very well under all testing conditions. 

2. The results comply with basic power system principles and engineering judgement very 

well.

3. The proposed framework is promising for power system autonomous operation and control.



Summary of Results: IEEE 14-bus System
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Summary of Results: Illinois 200-bus System

Note that the 
DQN Agent 
only controls 
5 adjacent 
generators
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• Background and motivation

• Grid Mind: Autonomous grid dispatch and control based on PMU 

measurements

• Deep Reinforcement Learning

• Autonomous grid voltage control

• Demo

• How to architect/tune an effective self-learning agent?

• Discussion/Other applications



Demo of Grid Mind: Autonomous Voltage Control
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Step 1: Perturb the System
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Step 2: Check for Voltage Violations

32



Step 3: Grid Mind Suggests Actions and Performance
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• Grid Mind: Autonomous grid dispatch and control based on PMU 

measurements

• Deep Reinforcement Learning

• Autonomous voltage control
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How to Design/Train an Effective DRL Agent

 Testing Roadmap

.

1. Consider different sizes of action space

2. Consider different neural network structures
• Number of neural networks

• Number of layers

• Number of neurons

3. Consider different regularization methods
• Batch normalization

• Layer dropout

4. Consider different DRL formulations
• Deep-Q-Network (DQN)

• Deep-Deterministic-Policy-Gradient (DDPG)

5. Consider dynamic adjustment process

 Considerations

There are tons of parameters, settings, and different formulations that need to be 

designed and specified. And subtle difference in them may generate very 

different results.
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Lessons Learned, After Hundreds of Thousands of Numerical Experiments

DQN Agent

Objective Measures Conclusion

Evaluate influence of different 

sizes of action space 

Change action space from 54

to 55

Performance deteriorates when 

action space size grows

Evaluate the influence of two 

different types of DQN 

structure

Single-DQN and double-

DQN are tested 

A double-DQN has a better 

performance over a signle-DQN

Evaluate the influence of 

layers and neuron numbers

Test with 2/3 layers with 

20/40 neurons

Subtle performance degradation is 

observed when increasing lay. or 

neu.

Evaluate the influence of 

regularization methods

Using batch normalization 

and layer dropout

Applying regularization methods 

significantly improves performance

DDPG Agent

Objective Measures Conclusion

Evaluate the influence of 

regularization methods

Using batch normalization 

and layer dropout

Applying regularization methods 

significantly improves performance

Evaluate a different 

formulation way to control 

voltage

Dynamically increase or 

decrease the voltage setting 

point for a small step in each 

iteration

The agent is able to solve the 

voltage problem using minimum 

iterations after well trained.

Summary of Tuning Results



Conclusion and Future work

 The proposed DRL framework demonstrates very promising results for power 

system autonomous dispatch and control, using measurements from advanced 

sensors, PMU as an example.

 When reactive resources are sufficient and/or distributed unevenly, Grid Mind can 

find very fast and effective solutions for fixing voltage issues.

 Research team will train and enhance AI agents to find optimal solutions for 

scenarios with limited reactive resources.

 Thorough testing has been carried out to study the influence of various factors, 

which sheds light on the design of an effective agent/robot.

 Therefore, we have duplicated an example of Alpha Zero, Grid Mind, for 

power systems. 

 With extensive offline calculation and online learning, in the mid-term, Grid 

Mind serves as an assistant to grid operators; in the long term, Grid Mind will 

be the core of power system operation ROBOT. 

 With proper modifications, the proposed framework can be applied to many 

other applications.
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Thank you!

di.shi@geirina.net

www.geirina.net/research/2
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