Real Time Applications Using Linear State Estimation Technology (RTA/LSE)

DOE Grant Award #DE-OE0000849

Ken Martin & Lin Zhang, Principal Investigators
Electric Power Group

NASPI
Oct 23, 2018
Philadelphia, PA
Acknowledgement and Disclaimer

- Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-OE0000849.

- Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Presentation

• Introduction & participants
• Project objective & approach
• Overview of application developments
• Status & schedule
• Planned activities
Introduction

• Project: Real Time Applications Using Linear State Estimation Technology
 – DOE Grant Award DE-OE0000849
• Primary recipient: Electric Power Group, LLC
 – Principal Investigators: Ken Martin & Lin Zhang
• Project Partners (host site & cost share):
 – Bonneville Power Administration
 • Project lead – Tony Faris/Thong Trinh
 – New York Power Authority
 • Project lead – Atena Darvishi/Alan Ettlinger
• Project host site - Duke Energy
 • Project lead – Megan Vutsinas, Tim Bradbury, Evan Phillips
Advisors & observers

• Project Advisors
 – Anjan Bose – Washington State University
 – Ian Dobson – Iowa State University
 – Dejan Sobajic – Grid Engineering
 – Anurag Srivastava – Washington State University

• Project Observers
 – Dominion Virginia Power (Dominion) - Kyle Thomas
 – Peak Reliability - Hongming Zhang
 – PJM - Emanuel Bernabeu, Ryan Nice
Project Objective

• Develop Real Time Applications Using Phasor Data and Linear State Estimator Technology
 – Provide operators with actionable intelligence on contingencies, voltage margins, & phase angle limits

• Applications include
 – Real Time Contingency Analysis
 – Voltage Stability Monitoring
 – Area Angle Limit Monitoring
Project approach

- Implement 3 applications to monitor power system
- Test with simulated and recorded data
- Demonstrate at host utilities

Phasor Data Stream

Data: Concentration, Validation, Alignment – PDC and LSE

Real-time Contingency Analysis (RTCA)

- Voltage corridor stability detection
- Area angle stability detection

Operator notification
ENHANCED LINEAR STATE ESTIMATOR (eLSE)
eLSE Inputs

- Network Model (CIM format)
 - Converted into eLSE format model
- PMU Data (C37.118)
 - Real-time or recorded
- Topology Info (Breaker status)
 - From EMS or recorded

System Topology

- C37.118 PMU data
 - Real-time

Utility Network Model (CIM)

- Estimated Synchrophasor Data
- Virtual PMU’s with Estimated Values
- List of Measurement Anomalies
Flow Chart of eLSE Engine

- eLSE input interface processes inputs and send them to eLSE core modules
- eLSE core modules include:
 - Topology Process
 - Observability Analysis
 - Linear State Estimation
 - Bad Data Detection & Identification
REAL-TIME CONTINGENCY ANALYSIS (RTCA)
RTCA operation

- Tests what can happen next based on the current system
 - Uses a pre-made list of contingencies such as line outages, transformer failure, RAS actions, etc.
 - Checks for low voltage or excessive power flow caused by the outage
- Uses a solved case from the LSE
- Applies each contingency, checks for violations
 - Check power flow and bus voltage limits
 - Rank and list violations
 - Send alerts based on violation level
- Manual operation allows testing user specified cases
 - Special conditions, pre-study before switching
RTCA Challenge – getting good results with small number of measurements (observability)

- Entire Network = G
- LSE observable subnetwork = S
- Systems connected by lines on boundary busses B_i
- Ps-inj = Power Injection at Boundary Buses

Approach with 2 methods:
- Method 1 – consider only the observable subsystem S
- Method 2 – consider the whole system but update observable portion S
Method 1

- Use only the subsystem that is covered by PMU measurements (this portion is called ‘observable’)
- External System is removed and its effect is represented by constant Power Injections (P & Q)
- Apply contingencies only to subsystem S
Method 2

- Use the entire system G
- Update the observable subset S with measurements from the LSE
- Use the load flow program to adjust the whole system to the observable system
- Apply contingencies to any part of the system (primarily subsystem S)
Method 2 Results – Contingency Line 16-17

<table>
<thead>
<tr>
<th>Bus No</th>
<th>Vmag (pu)</th>
<th>Power (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contingency 16_17</td>
<td>Branch Results</td>
</tr>
<tr>
<td></td>
<td>Full System</td>
<td>% Error</td>
</tr>
<tr>
<td>1</td>
<td>1.04923587</td>
<td>1.052979209</td>
</tr>
<tr>
<td>2</td>
<td>1.05218021</td>
<td>1.06171797</td>
</tr>
<tr>
<td>3</td>
<td>1.041905853</td>
<td>1.056807871</td>
</tr>
<tr>
<td>4</td>
<td>1.03508921</td>
<td>1.0571593</td>
</tr>
<tr>
<td>5</td>
<td>1.05470734</td>
<td>1.071598385</td>
</tr>
<tr>
<td>6</td>
<td>1.056229554</td>
<td>1.07230031</td>
</tr>
<tr>
<td>7</td>
<td>1.041905853</td>
<td>1.056807871</td>
</tr>
<tr>
<td>8</td>
<td>1.03508921</td>
<td>1.0571593</td>
</tr>
<tr>
<td>9</td>
<td>1.04614916</td>
<td>1.053120786</td>
</tr>
<tr>
<td>10</td>
<td>1.04415506</td>
<td>1.058894016</td>
</tr>
<tr>
<td>11</td>
<td>1.04703338</td>
<td>1.062112774</td>
</tr>
<tr>
<td>12</td>
<td>1.02882864</td>
<td>1.046919127</td>
</tr>
<tr>
<td>13</td>
<td>1.03996764</td>
<td>1.056147984</td>
</tr>
<tr>
<td>14</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>15</td>
<td>1.014522239</td>
<td>1.034296619</td>
</tr>
<tr>
<td>16</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>17</td>
<td>1.02882864</td>
<td>1.046919127</td>
</tr>
<tr>
<td>18</td>
<td>1.03996764</td>
<td>1.056147984</td>
</tr>
<tr>
<td>19</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>20</td>
<td>1.014522239</td>
<td>1.034296619</td>
</tr>
<tr>
<td>21</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>22</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>23</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>24</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>25</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>26</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>27</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>28</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>29</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
<tr>
<td>30</td>
<td>1.032597618</td>
<td>1.052484955</td>
</tr>
</tbody>
</table>

Highlighted – Buses/Lines in Subnetwork S
Decision & next steps

• Method 2 selected
 – Both methods produced high errors at boundary due to limited observability
 – Method 2 gave better results and also allows testing contingencies near boundary and externally; drawback is longer computation time
 – Testing with IEEE 300 bus test system confirmed improvement on a bigger system and advantages of Method 2

• Testing for deployment at BPA
 – WECC Planning Case 2020 HS (~ 20,000 Buses)
 – Subnetwork – 500 kV BPA System
 • Buses – 162 and Branches – 196
VOLTAGE CORRIDOR STABILITY LIMIT MONITORING
Methodology: Single Line Equivalent for a Transmission Corridor

- The PMU measurements at both ends of a transmission corridor are required.
- Complex power is computed from the complex V & I measurements.
- Using the complex power through the system and current flow in and out of the corridor, the voltage across the corridor can be computed.
- The index is simply the voltage across the system divided by the load voltage.
- Reactive support has to be considered.
VSI reaction to loss of 2 Palo Verde Units

Next steps: determine threshold & determine reactive support
AREA ANGLE LIMIT MONITORING
Area-angle application

- Power flow creates a phase angle
- Higher angles result from
 - Higher power flow
 - Higher impedance (fewer lines carrying flow)
- Angle can indicate excessive stress or a lost transmission line
- Area angle indicates transmission failure or overloads
Methodology: reduce area & relate to angle

- Select an area with a distinct power flow through it, that has PMU measurements at all busses on border of area
- Determine a weighting for each boundary bus based on the network admittances; this uses the Kron reduction on the base case to determine the weighting. This effectively reduces the area to a single line equivalent
- The maximum allowed power flow is determined by studying single line outages; the area angle threshold is given by the worst case outage
Challenges

• With limited PMU coverage, it is difficult to find an area where the boundary is completely monitored by PMUs
• The area needs to have a distinct power flow through it to cause angle changes reflected by power flow
• With a large meshed grid, there may be many exceptional outages (ie, outages where line limits are exceeded but the angle change doesn’t exceed a threshold)
Project status

• Presented paper on RTCA development at the NAPS conference in September 2018
• Project extended 1 year to March 14, 2020
• RTCA and voltage corridor applications have been turned over to the EPG development team
 – User interfaces will also be developed
• We continue to resolve issues in Area angle app
Extended Project Timeline

<table>
<thead>
<tr>
<th>Task</th>
<th>Deliverable</th>
<th>Completion Date</th>
<th>Documentation & notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management Plan</td>
<td>4/12/2017</td>
<td>Project management plan document</td>
</tr>
<tr>
<td>2</td>
<td>Research, Design & Development of Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Real time applications prototype, and development and testing</td>
<td>10/1/2018</td>
<td>Test cases and test results</td>
</tr>
<tr>
<td>2.3A</td>
<td>Completion and testing of deployable applications</td>
<td>1/31/19</td>
<td>Documented test results</td>
</tr>
<tr>
<td>2.4</td>
<td>Prototype Demonstration for DoE and all the participants</td>
<td>3/16/2019</td>
<td>Demonstration at EPG</td>
</tr>
<tr>
<td>3</td>
<td>Deployment, Testing & Acceptance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Factory Acceptance Test</td>
<td>5/4/2019</td>
<td>Test cases and test results</td>
</tr>
<tr>
<td>3.2</td>
<td>Site Acceptance Test</td>
<td>8/31/2019</td>
<td>Test cases and test results</td>
</tr>
<tr>
<td>4</td>
<td>Demonstration at utility host site, training and a report</td>
<td>11/7/2019</td>
<td>Demonstration, training and report</td>
</tr>
<tr>
<td>5</td>
<td>Marketing and Outreach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Marketing Plan</td>
<td>2/1/2020</td>
<td>Marketing plan</td>
</tr>
<tr>
<td>5.2</td>
<td>Outreach</td>
<td>3/14/2020</td>
<td>Industry presentations & briefing documents</td>
</tr>
</tbody>
</table>
Looking Forward

• Planned next steps
 – Application Implementation in operational code
 • Operational code testing in December 2018
 – Develop area angle application
 – Adapt applications for test site deployment
 • NYPA – November-December 2018
 • Duke – January-February 2019

• Project roadmap
 – FY 2019: Complete application development & deploy at host sites
 – FY 2020: Host site demonstrations with real-time operation & produce commercialization plan
Questions?