Enhanced State Estimation

Michael Cassiadoro and Marianna Vaiman

CRSTT & PRSVTT Joint Panel NASPI Work Group Meeting Philadelphia, PA • October 23, 2018

Agenda

- I. Define how functional entities use state estimation to perform reliability-related tasks.
- II. Explain how synchrophasor technology can be used to enhance state estimation.
- III. Discuss the status of enhanced state estimation in today's control room environment and lessons learned.
- IV. Describe impediments that must be addressed to fully integrate enhanced state estimation into the operational toolset.
- V. Consider how CRSTT & PRSVTT can coordinate on related work efforts to their mutual benefit.

Recent NERC & IRO Standard Changes

Recent NERC Standard changes emphasize the:

- Performance of Operational Planning Analyses (OPA) to assess pre- and post-Contingency performance for day-ahead timeframe,
- Development of Operating Plans for issues identified in OPA,
- Performance of RTAs to identify actual or expected SOL and IROL exceedances,
- Implementation of Operating Plans to prevent or mitigate SOL and IROL exceedances, and
- Robust outage coordination processes to ensure reliability under outage conditions.

Functional Entity Roles & Responsibilities

The ultimate task of Reliability Coordinators (RC) and Transmission Operators (TOP) is to continually assess and evaluate projected system conditions as Real-time approaches with the objective of ensuring acceptable system performance.

These assessments are typically performed in an iterative fashion within the Operations Horizon:

- Seasonal planning studies and other special studies
- Outage coordination studies
- Operational Planning Analyses (OPA)
- Real-time Assessments (RTA)

Real-Time Operational Toolset

Purpose of State Estimator (SE)

- Main tool to assess reliability and stability of a power system in real-time environment at a utility/ISO:
 - Basis for all advanced applications and market applications
- Designed to **produce a system state** based on the "best estimate" of the system voltages and phase angles:
 - Provided that there are errors in the measured quantities; and
 - That there is a redundancy in measurements
- Minimizes the sum of squares of the differences between the estimated and the measured values of variables
 - The computation of least square estimation in use since early 19th century
- Purpose of State Estimator is the same regardless of input measurements: SCADA, PMU, or both

State Estimation Process

Using PMUs in State Estimation

- Two types of state estimation use PMUs:
 - Hybrid State Estimator
 - Linear State Estimation

Hybrid State Estimator

- Hybrid State Estimator:
 - A nonlinear state estimator using SCADA and PMU measurements
 - As any nonlinear SE, uses an optimization algorithm, such as Newton method, BFGS quasi-Newton method, etc.
 - BFGS method (right) performs optimization steps in a cycle
 - At each optimization step, objective function and its gradient are computed multiple times

Linear State Estimation

- Uses synchronized voltage and current phasor measurements from PMUs
- A complex multistep process

Advantages of Using PMU Measurements for State Estimation

- Hybrid State Estimator:
 - PMUs add redundancy;
 - Uses phase angle measured by PMUs vs. estimated value
 - PMUs may increase observability (if installed at locations not observable by SCADA)
- Linear State Estimator:
 - Improves real-time resilience:
 - A backup to the conventional SE solution if it fails to solve or SCADA data is not available
 - Improves real-time reliability:
 - A check/validation for the quality of conventional state estimator
 - High speed of state estimation due to using a direct non-iterative solution
 - Solves at PMU sample rate (30 times/sec or 60 times/sec)

Output of State Estimator

- Regardless of the type of input measurements (SCADA and/or PMU), the output should be the same
- Output of any State Estimator is a system state:
 - Usually, a node-breaker model
 - This case is used to compute power flow and perform advanced calculations:
 - Real-time contingency analysis, voltage stability analysis, transient stability analysis, analysis of cascades, etc.
 - Conditioned PMU stream is one of the outputs of LSE
- Any state estimator is used for bad data detection/conditioning

LSE as the Foundation of Advanced Apps

Acceptance of PMUs for State Estimation

• Results of 2016 IEEE/CRSTT survey

Integrating Enhanced State Estimation into the Operational Toolset

- Control room acceptance:
 - Hybrid SE is becoming an accepted tool in control room
 - LSE is still being viewed as a new tool that needs to become more mature and requires further validation
- Limitations of LSE today include:
 - Limited number of PMUs; therefore, limited observability and significantly smaller size (in term of the number of nodes/buses) of "PMU case" as compared conventional SCADA-based SE case
 - No need and capability to run advanced apps at PMU sampling rate, so no need to have a case 30 times/s

What Needs to be Done to Bring LSE to Control Room?

- Questions to answer:
 - Conventional SE is a reliable, proven, mature tool. If SE, a trusted tool that we rely on works, why do we need anything else, like LSE?
 - If PMU data and SCADA data are close, but LSE and SE results differ, which tool to trust? How to verify which solution is correct?
 - When using the LSE output as the state estimator case for advanced apps, how accurate are the results of these apps compared to results from the conventional apps?

Discussion