

Distribution Task Team Breakout Session

Sascha Von Meier, Luigi Vanfretti (co-leads) and Teresa Carlon (support) **April 25, 2018**

Outline:

- Summary of DisTT session presentations.
- DisTT business summary.

Metrological characterization of a calibrator for static and dynamic characterization of Distribution Network PMUs

Guglielmo Frigo, Asja Derviškadić and Mario Paolone Swiss Federal Institute of Technology (EPFL) - Distributed Electrical System Laboratory (DESL)

- Built a PMU calibrator to reproduce test conditions, with TVE ~
 0.00x in static conditions and TVE ~ 0.0x% in dynamic conditions
- Derive accuracy requirements for distribution PMUs
- Discussed inadequacy of IEEE C37.118.1, particularly 1%TVE
- Discussed validity and appropriateness of TVE and proposed and alternative performance index based on RMSE between acquired and recovered fundamental trends in the time domain.

DESL-METAS Calibrator

Metrological characterization of a calibrator for static and dynamic characterization of Distribution Network PMUs

Guglielmo Frigo, Asja Derviškadić and Mario Paolone Swiss Federal Institute of Technology (EPFL) – Distributed Electrical System Laboratory (DESL)

Monitoring of Active Distribution Networks using Synchrophasor Applications benefiting Joint T&D Operations

Luigi Vanfretti Rensselaer Polytechnic Institute

Addressed need for interaction between Active Distribution Networks (ADN) and Transmission Network Operators (TNOs)

View from ADN

View from TNO

Monitoring of Active Distribution Networks using Synchrophasor Applications benefiting Joint T&D Operations

Luigi Vanfretti Rensselaer Polytechnic Institute

DSOs can enhance the way they operate by having better knowledge of the system's performance in near real-time TSOs can gain visibility of the phenomena at lower voltage levels, and device actions.

Monitoring of Active Distribution Networks using Synchrophasor Applications benefiting Joint T&D Operations

Luigi Vanfretti Rensselaer Polytechnic Institute

Apps discussed:

- Steady-State Model Synthesis
- Dynamic Line Ratings for Distribution Feeders
- Decoupled Voltage Stability Analysis of TNs and ADNs
- Distributed Mode Estimation

The Kaiser Richmond Microgrid:

Scheduling and control of renewable power with phasor feedback

Raymond De Callafon and David Bliss

University of California San Diego and Charge Bliss

The Kaiser Richmond Microgrid:

Scheduling and control of renewable power with phasor feedback

Raymond De Callafon and David Bliss University of California San Diego and Charge Bliss

- PMUs for phasors and power flow at solar inverter and point of interconnection identified previously unknown kW demand spikes
- Intelligent control of battery storage
 - Power flow optimization & scheduling, time of use energy shifting, power smoothing, demand management provide significant savings
 - Energy Shifting: Clear Business Case Identified!
 - Cost savings of \$4,500/month, ROI 5-6 years.

The Kaiser Richmond Microgrid:

Scheduling and control of renewable power with phasor feedback

Raymond De Callafon and David Bliss University of California San Diego and Charge Bliss

Future work:

- Islanding
- Visualization
- Real-time demand cost reduction
- Automated Demand Response (ADR Market)
- Automated power quality regulation (future market?)

Intelligent PMU

Alexey Danilin, Pavel Kovalenko and Viktor Litvinov GRT Corporation

- Discussed importance of moving computing to the network edge.
- Presented PowerLink, a distributed platform exploiting cloud technologies.
- Key component: IntelligentPMU
 - PMU based on Industrial Internet of Things (IIoT) Intelligent Controller
 - Interconnects with other Intelligent Controllers for computing-load balancing and fault tolerance
 - Built-in analytics.

Intelligent PMU

Alexey Danilin, Pavel Kovalenko and Viktor Litvinov

GRT Corporation

Business part of the DisTT Breakout Session:

Discussion of next work product(s) and methods

Goal: Define Use Cases and potential PMU Applications.

Methods: Literature survey, simulationbased studies, initial-results from deployed systems. Goal: Define *potential* quantitative metrics, experiments & tests methods, procedures, etc., that guide in setting *quantitative performance specifications and requirements* for future distribution PMU standards.

Methods: Literature survey, experimental results, initial-results from deployed systems.

Goal: Identify the technoeconomic potential and risks of *embedding* PMU functions in different assets.

Methods: Literature survey, simulation studies, physical prototypes.

Discussion – next steps:

- We need to establish an empirical baseline of high-resolution distribution system measurements to understand data quality needs and realities, including point-on-wave (time-domain) data; the group discussed possibilities for curating and sharing measurement data
- It's time to develop business cases for distribution applications in the context of DER markets. Microgrid discussion today was a good start.
- We'd like to consider a **survey** regarding distribution system measurement data and their quality: what do you have, what do you wish you had?
- We want to learn about PMU performance requirements motivated by specific applications.

Join the conversation!

naspi.org/distt

teresa.carlon@pnnl.gov luigi.vanfretti@gmail.com vonmeier@berkeley.edu

