New Approaches to Protection and Control Enabled with GPS-Synchronized Merging Units

Sakis Meliopoulos*, George Cokkinides*, Paul Myrda** and E. Farantatos**

* Georgia Institute of Technology, Atlanta, Georgia USA
** Electric Power Research Institute, USA
Presentation Outline

• Objectives and Driving Forces
• Error Correction within Merging Units
• Substation Centralized Protection Scheme
• Detection of Hidden Failures
• Real Time Correction (self healing)
• Numerical Examples
• Conclusion
Introduction

Objectives:
Core issues in Centralized Substation Protection: (a) ensure accuracy of input data to protection functions and (b) Monitor P&C systems for detecting problems that affect zone protection such as hidden failures, incorrect data, etc.

Driving Forces:
Avoid Desensitization of Protective Functions
Uncertainties in input data require safety margins in protection settings

Minimize Protection system Mis-Operations
About 10% relay mis-operations (65% due to hidden failures)

Cope with new changes in power system
Renewable resources, Micro grids
Power electronics based interfaces

Technological Advancements
Separation of data acquisition from logical functions
Advances in software technology
Communication infrastructure
Accuracy of Input Data

Relays and merging units are becoming more accurate by using higher resolution in data acquisition and higher sampling rates.

Errors from instrumentation channels are practically remain the same. Instrumentation channel errors have been much higher than the errors introduced by the data acquisition even in earlier generations of sensor less systems.

Efforts to account and correct for instrumentation channel errors date back several decades.

Merging Units offer a unique opportunity to perform error correction within a merging unit → MU provides corrected data in primary quantities.
Given a measurement at the secondary of an instrumentation channel, can we extract the correct value of the primary quantity?

Can it be done on a sample by sample basis?
Basic Approach to Error Correction

Construct the mathematical model of the instrumentation channel:
Example CT Channel

Use actual measurement. Augment with: (a) virtual measurements, (b) derived measurements and (c) pseudo measurements. → redundant measurements.
Perform dynamic state estimation → best estimate of primary
CT channel Error Correction

- Normal operation:
- CT measures the current through phase A at bus MID1.

CT Channel math Model

- States: 15
- Actual Measurements: 1
- Virtual Measurements: 14
- Derived Measurements: 4
- Pseudo measurements: 1
CT channel error correction

CT Drive to saturation due to a fault at 1 sec
VT channel error correction

VT normal operation

VT Channel math Model

- States: 17
- Actual Measurements: 1
- Virtual Measurements: 15
- Derived Measurements: 6
- Pseudo measurements: 2
Limitation of Error Correction Methods

Error Correction methods work well when instrumentation is healthy.

In the presence of hidden failures in instrumentation channels, error correction methods do not have enough information to detect the condition. Data will be compromised.

Need redundant measurements to identify hidden failures and correct data.
Impact of Hidden Failures

Hidden failures corrupt the data “seen” by a relay, legacy relay or setting-less protective relay.

Hidden failures will cause relay mis-operation whether it is a legacy protective relay or a setting-less relay.

Need to identify hidden failures and avert relay mis-operations.

Present State of Art: Some legacy relaying schemes can identify some hidden failures and inhibit relay operation. No capability to take corrective action.
Dynamic State Estimation Based Centralized Protection Scheme (DSEBCPS)

Overview

Zone 1 AQCF Model
Zone 2 AQCF Model
Zone N AQCF Model
Zone 1 Measurement Definitions
Zone 2 Measurement Definitions
Zone N Measurement Definitions
Substation AQCF Model
Substation Measurement Model
Centralized Substation Protection
Dynamic State Estimation (Detection Process)
Hypothesis Analysis (Identification Process)
Compromised Data Correction

Process Bus
Station Bus
Phasors

MU
MU
MU
MU
Dynamic State Estimation Based Centralized Protection Scheme (DSEBCPS)

Hypothesis Testing: Observations

At substation level redundancy is high (over 2000%)

System is continuously running.

Probability of simultaneous failure events is low

Hypothesis Testing: Mechanics

Identify suspect measurements from residuals

Group suspect data with certain criteria (see paper)

Determine “faulted devices” from setting-less relays output
Dynamic State Estimation Based Centralized Protection Scheme (DSEBCPS)

Hypothesis Type 1 (H1): Remove suspect measurements and rerun DSE. If probability high \rightarrow removed measurements are bad \rightarrow identify root cause \rightarrow issue diagnostics \rightarrow replace bad data with estimated values. End hypothesis testing. Otherwise go to **H2**.

Hypothesis Type 2 (H2): (determine if a fault decision is correct). For the reported faulted device, remove all internal device measurements and remove the faulted device model from the substation model. Then rerun DSE. If probability high \rightarrow the device is truly experiencing an internal fault. Allow zone relay to trip the faulted device. End hypothesis testing.

Hypothesis Type 3 (H3): This test combines type 1 and type 2 hypothesis testing to cover the case of a simultaneous fault and a hidden failure.
Numerical Example

Case Study:

5 Protection Zones:

– 115 kV Transmission Line
– 115 kV Bus
– 115/13.8 kV, 36 MVA Transformer
– 13.8 kV Bus
– 13.8 kV Distribution Line (one of the two)
Numerical Example
Case 1: Primary Fuse Blown Y-Y, PT-4A

Sequence of Events

- 0 seconds: Load Switched On
- 6 MW Load Switched On
- 3 seconds: Fuse Blown
- 5 seconds: 6 MW Load Switched Off
Numerical Example

Case 1: Primary Fuse Blown Y-Y, PT-4A
Setting-less Relay of Transformer Zone:

Transformer Zone LV Side PhA (V):
22.82 kV - 11.60 kV

Transformer Zone LV Side PhB (V):
11.61 kV - 11.63 kV

Transformer Zone LV Side PhC (V):
11.64 kV - 13.29 kV

Confidence Level:
1.000

Trip Decision:
1.500 s - 3.121 s
Numerical Example

Case 1: Primary Fuse Blown Y-Y, PT-4A

Centralized Protection Scheme:

Highest Values of Normalized Residual
Numerical Example

Case 1: Primary Fuse Blown Y-Y, PT-4A
Centralized Protection Scheme:

- Confidence Level
- Hidden Failure Status
- Faulty Zone Status

![Graphs showing Confidence Level, Hidden Failure Status, and Faulty Zone Status over time from 0.000 s to 4.992 s.](image)
Numerical Example

Case 1: Primary Fuse Blown Y-Y, PT-4A
Compromised Data Correction:

- Abnormality detection
- Root cause analysis
- Estimated data streaming and replacement
- 2 cycles

Graphs showing confidence level and trip decision.
Conclusions / Recommendations

Two basic innovations for Centralized Substation Protection have been presented:

Innovation 1: Instrumentation error correction is embedded into intelligent Merging Units → provide corrected sampled values in real time – primary quantities

Innovation 2a: Supervision of protection functions (logical nodes) to determine that hidden failures do not exist.

Innovation 2b: Supervision of protection functions (logical nodes) to determine if hidden failures exist. In this case, use existing redundancy to replace compromised data with estimated data and enable continuous reliable operation of logical nodes (protection functions)
Τέλος