

Applicability of Synchrophasor Data for Fault Analysis

NASPI, April 2018

Nuwan Perera, Ph.D., P.Eng.
ERLPhase Power Technologies, Winnipeg, MB
Canada

Krish Narendra, Ph.D.
Electric Power Group, LLC, Pasadena, CA
USA

Outline

- Introduction
- PMU data for fault analysis
 - Phasors and sequence components
 - Impedance based fault location estimations
- Factors considered
 - Filter type (P/M)
 - Fault duration
- Analysis of data
 - Faults
 - SSO/SSR
- Conclusions

Introduction

- The synchrophasor standard IEEE C37.118.1a-2014 presents two performance class filters.
 - P&M
- This presentation focuses on the applicability of the P and M class synchrophasor data for fault analysis.
- The synchrophasor data captured from an industrial PMU implemented as per IEEE C37.118.1a- 2014 was used for this analysis.
 - Simulated data from a Real Time Digital Simulator (RTDS)
 - Field reported events
- Data is captured using the in-built PDC program available with the device.

Important Considerations

- Typical fault durations
 - Depends on the response of the protection and speed of the circuit breakers.
 - Response of the conventional relays: ~1 cycle, high speed CBs : ~1 cycle
 ~2 cycle
- Effect of the filters (P/M)
 - Finite Impulse Response with ~2 cycles (P) and ~ 5 cycle (M)
- Reporting rates available

System frequency		50 Hz				60 H			
Reporting rates (F ₅ —frames per second)	10	25	50	10	12	15	20	30	60

- <u>Testing Considerations/ Parameters</u>
 - Testing was done with the faults simulated at 2 cycles and above
 - Selected reporting rate = 60 Hz (60 Hz system)

Test Setup

RTDS Testing: Simulated Waveforms

DOBLE Amplifier: Real time playback of recorded waveforms

PMU Settings

Basic PMU Settings

PMU Calibration

Angle Reference – PMU Settings

- Angle Calibration
 - RTDS and PMU Connected to GPS 1 PPS

Analysis of Simulated Faults: RTDS

- Test Cases
 - Effect of fault during P class estimation
 - Effect of fault during M class estimation
 - Fault location calculation M class

Summary: PMU reporting at 60Hz

Duration (cycles)	Zero Seq. Voltage (V)	Zero Seq. Current (A)
2	9.5 V	0.72 A
3	10.1 V	0.83 A
4	10.1 V	0.83 A
5	10.1 V	0.83 A

Summary: PMU reporting at 60Hz

Duration (cycles)	Zero Seq. Voltage (V)	Zero Seq. Current (A)
2	8.2 V	0.71 A
3	10.9 V	0.9 A Over-shoot
 4	10.4 V	0.87A
5	10.1 V	0.83 A
6	10.1 V	0.83 A

Impedance Based Fault Location: M Class

- Method: Takagi Algorithm
 - PMU data (120 samples/sec = 2 samples/cycle)
 - M class (C37.118.1a-2014)
- 3 cycle fault
 - Actual: 3 km; Estimated: 6.7 km

- Bay1.Vb.
- Bay1.Vc.
- Bay1.la.
- Bay1.lb.
- Bay1.lc.

Seconds

Effect of the fault duration (single phase to ground fault)

	Duration (cycles)	Actual Distance (km)	Estimated Distance (km)
	3	4.0 km	6.7 km
	4	4.0 km	3.8 km
	5	4.0 km	3.9 km
	6	4.0 km	4.0 km

Analysis of Actual Fault Records

Test Cases

- 3-cycle fault leading to SSO/SSCI condition
 - Application: a windfarm connected to a series compensated line
- SSO/SSCI
 - Application: a windfarm connected to a series compensated line

High Speed Record

Sub-harmonics

• PMU Calculations: P- Class, 60 samples/sec : Magnitudes

3rd reporting followed by the fault

PMU Calculations: P- Class, 60 samples/sec: Angles

3rd reporting followed by the fault

PMU Calculations: M- Class, 60 samples/sec: Magnitudes
 3rd reporting followed by the fault

• PMU Calculations: M- Class, 60 samples/sec: Magnitudes

3rd reporting followed by the fault

SSO/SSCI Event

Sub-harmonics

SSO/SSCI Event – PMU Reporting

PMU Calculations: 60 samples/sec: Magnitudes

Summary

- Use of synchrophasor data for fault analysis purposes was investigated for P and M filter applications(C37.118.1a -2014).
 - Phasor data, Sequence components and impedance
- Analysis was carried out using simulated and actual fault data.
 - P class filters require ~2+ cycle data to provide an acceptable accuracy
 - M class filters require ~5 cycle data to provide an acceptable accuracy
- Impact of the sub-harmonics on the synchrophasor data was analyzed using field reported SSO/SSR events.
 - P class filter outputs showed higher impact compared to M class filter outputs.
- Further testing is being carried out with more recorded/simulated events to make this analysis comprehensive
 - Report for PRSV Task Team

Thank you! Questions?