Requirements for Time Series Data Platforms: A Technology Overview with Benchmarks April 25th, 2018 Albuquerque, NM

Sean Patrick Murphy Ping**Things**

Michael Andersen

Kevin Jones Dominion Energy®

Outline

- Platform Requirements 4 Key Drivers
 - 1. The Nature of Time Series
 - 2. The Real World is Messy (or Sensors)
 - 3. Analytics as First Class Citizens
 - 4. Size Matters
- Benchmarking Implications
- What is a Platform?

The Nature of Time Series

(timestamp, value)

Ping**Things**

Spring 2018 NASPI | 4

(timestamp, value)

64-bit integer

64-bit float

Ping**Things**

[-9,2

Spring 2018 NASPI | 5

(timestamp, value)

(151511220000000000, 50.6285209655761)

(1515112200008333333, 50.6273155212402)

(1515112200016666666, 50.6269416809082)

(1515112200024999999, 50.6258087158203)

(1515112200033333332, 50.6216735839843)

(1515112200041666665, 50.6205940246582)

(1515112200049999998, 50.6227645874023)

(1515112200058333331, 50.6207199096679)

(15151122000666666664, 50.6192970275878)

(1515112200074999997, 50.6227836608886)

(1515112200083333330, 50.6249427795410)

Ping**Things**

Intrinsic Redundancy

- Can compress timestamps and values
 - Lossy and Lossless
 - Intra-stream and Inter-stream
- Many approaches available

P. Lindstrom and M. Isenburg. Fast and Efficient Compression of Floating-Point Data. Visualization and Computer Graphics, IEEE Transactions on, 12(5):1245–1250, 2006.
P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast Lossless Compression of Scientific Floating-Point Data. In DCC, pages 133–142. IEEE Computer Society, 2006.

- Classic space/time tradeoff
- We achieve ~3:1 lossless compression

Ping**Things**

Write Patterns

Spring 2018 NASPI | 8

Write Patterns

Read Patterns

1. Human interaction and exploration of the data

2. Analytics

Read Patterns

"Overview first, zoom and filter, then details-on-demand."

The Visual Information-Seeking Mantra [Shneiderman, 1996] summarizes many visual design guidelines and provides an excellent framework for designing information visualization applications.

About 4 billion data points

Berkeley tree Data Structure

Copy on write K-ary Tree Partitioning static time (1933 to 2079)

Leaf nodes

- Time, value pairs + length

Internal nodes

- Pointers to children
- Version annotations for children
- Aggregates for children
 - Min, Mean, Max, Count
 - Any associative operator

The Real World is Messy

Q: What changed between v2 and v3?

Q: What changed between v2 and v3?

Q: What changed between v2 and v3?

• Efficiently update calculations on out of order data

- Efficiently update calculations on out of order data
- Idempotent calculations????

- Efficiently update calculations on out of order data
- Idempotent calculations????
- Rewinding data arrival to understand and diagnose problems

Versioning Source Code

5 Internal/cephprovider/cephprovider.go		
Σ <u>‡</u>	Σ	@@ -148,12 +148,15 @@ func (seg *CephSegment) Write(uuid []byte, address uint64,
148	148	//start of an object. This is why we do not add the object max size here
149	149	//NEW NOTE:
150	150	//We cannot go past the end of the allocation anymore because it would b
151		<pre>- if ((naddr + MAX_EXPECTED_OBJECT_SIZE) >> 24) != (address >> 24) {</pre>
	151	+ if ((naddr + MAX_EXPECTED_OBJECT_SIZE + 2) >> 24) != (address >> 24) {
152	152	//We are gonna need a new object addr
153	153	<pre>naddr = <-seg.sp.alloc</pre>
	154	+ seg.naddr = naddr
154	155	<pre>seg.flushWrite()</pre>
	156	+ return naddr, nil
155	157	}
156	158	seg.naddr = naddr
	159	+
157	160	return naddr, nil
158	161	}

Analytics as First Class Citizens

Common Analytics Patterns

Ping**Things**

Common Analytics Patterns

Ping**Things**

Common Analytics Patterns

Ping**Things**

Common Analytics Patterns

Directed Acyclic Graph of Calculations

But Wait, There's More

- Windowing operations
- Spatial/Frequency Transforms
 - Wavelet
 - Fourier
 - Stockwell
- Indexing
- Clustering
- Classification
- Categorization
- Anomaly/Event/Novelty Detection
- Motif Discovery

But Wait, There's Even More!

Old Paradigm - Software Engineering

- Humans write the code
- Limited by ability to describe exactly what must be done without error

New Paradigm - Machine Learning

- Data teaches algorithms to perform function or task
- Limited by the amount of data and algorithms
- Algorithms need ***ALL*** available data
- Capable of tackling high dimensional problems

Deep Blue beats Gary Kasparov 1997

Watson beats champions 2011

AlphaGo beats Lee Sedol 2016

Who Cares?

- Analytics must be first class citizens of the platform
- The platform must be built from the ground up to support relevant analytic use cases

Size Matters

Measurements Per Second

Ping**Things**

Required Network Bandwidth (Lower Bound)

Ping**Things**

Annual Data Volumes (Lower Bound)

100000		4.6 TB	AF D TD	459.2 TB	4.5 PB	44.9 PB	448.5 PB	4.4 EB	43.8 EB	437.9 EB	4.3 ZB	42.8 ZB
100000	, 	4.0 1D	47.9 16	409.2 TD	4.3 FD	44.9 FD	440.3 FD	4.4 ED	43.0 ED	437.9 ED	4.3 ZD	42.0 ZD
10000)	470.2 GB	4.6 TB	45.9 TB	459.2 TB	4.5 PB	44.9 PB	448.5 PB	4.4 EB	43.8 EB	437.9 EB	4.3 ZB
1000)	47.0 GB	470.2 GB	4.6 TB	45.9 TB	459.2 TB	4.5 PB	44.9 PB	448.5 PB	4.4 EB	43.8 EB	437.9 EB
Streams)	4.7 GB	47.0 GB	470.2 GB	4.6 TB	45.9 TB	459.2 TB	4.5 PB	44.9 PB	448.5 PB	4.4 EB	43.8 EB
)	481.5 MB	4.7 GB	47.0 GB	470.2 GB	4.6 TB	45.9 TB	459.2 TB	4.5 PB	44.9 PB	448.5 PB	4.4 EB
Jo #		48.1 MB	481.5 MB	4.7 GB	47.0 GB	470.2 GB	4.6 TB	45.9 TB	459.2 TB	4.5 PB	44.9 PB	448.5 PB
		0.1 Hz	1 Hz	10 Hz	100 Hz	1 KHz	10 Khz	100 Khz	1 MHz	10 MHz	100 MHz	1 GHz
		SCADA		PMU			DFR			S	Sampling	Rates
							Megabytes	Gigabytes	Terabytes	Petabytes	Exabytes	Zettabytes

Ping**Things**

Big Data Conclusions

- Don't move the data, move the calculations.
 (Why analytics are first class citizens)
- We are going to need a bigger [machine(s)].

Two Options

Ping**Things**

How this Played Out

Who Cares?

- No single point of failure/resilient
- Much more cost effective
- Buy more capacity when you need it
- Flexible and adaptable

Benchmark Considerations

Core Benchmarks – Reading and Writing Data

#BTrDB	Streams	Total points	#Conn	Insert [mil/s]	Cold Query [mil/s]	Warm Query [mil/s]
1	50	500 mil	30	16.77	9.79	33.54
2	100	1000 mil	60	28.13	17.23	61.44
3	150	1500 mil	90	36.68	22.05	78.47
4	200	2000 mil	120	53.35	33.67	119.87

Analytics Benchmarks

	Distributed				
	Identity	Phase Difference	Reactive/Fundamental Pwr		
Input/Output streams	1/1	2/1	4/2		
Compute changeset	972 μs	1659µs	1180µs		
Query data [s]	69.8	104.4	196.9		
Kernel calculation [s]	10.8	22.7	245.5		
Delete old data[s]	6.7	6.9	15.8		
Insert new data[s]	40.7	39.8	66.5		
Changeset / compute time	1064 x	773 x	259 x		

What is a Platform?

What isn't a Time Series Platform?

What Does a Time Series Data Platform Do?

Ingest/Egest Clean/Condition/Fix **Store** Visualize Access/Use/Build With Analyze Learn From

The Goal of the Platform

Allow

utility subject matter experts to create value from (sensor) data.

Ping**Things**

Platform?

Ping**Things**

"A platform is a business based on enabling value-creating interactions between external producers and consumers. The platform provides an open, participative infrastructure for these interactions and sets governance conditions for them. The platform's overarching purpose: to consummate matches among users and facilitate the exchange of goods, services, or social currency, thereby enabling value creation for all participants.

Strategy has moved from controlling unique internal resources and erecting competitive barriers to orchestrating external resources and engaging vibrant communities. And innovation is no longer the province of in-house experts and research and development labs, but is produced through crowdsourcing and the contribution of ideas by independent participants in the platform. External resources don't completely replace internal resources—more often they serve as a complement. But platform firms emphasize ecosystem governance more than product optimization, and persuasion of outside partners more than control of internal employees."

sean@pingthings.ai