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Project goals

Develop a framework for PMU big data analysis
Event detection
Abnormalities detection
Improved situational awareness
System identification (learning system dynamic behavior) 
Advanced visualization

Framework is based on the cloud technology and distributed 
computing:

PNNL institutional cloud system or Microsoft Azure
Apache SPARK for distributed big data analysis and Machine Learning 
(ML)
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PNNL cloud infrastructure

PNNL cloud is based on OpenStack (a free and open-
source software platform for cloud computing)

Cloudera Apache Hadoop Distribution:

Apache Spark (an open source cluster computing 
framework)

Apache Hive (a data warehouse infrastructure built on 
top of Hadoop for providing data summarization, query, 
and analysis)

HBase (an open source, non-relational, distributed 
database)
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Apache Spark
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Large scale parallel data processing framework
Extremely powerful (up to 100x faster than Hadoop)
Large datasets distributed across multiple nodes 
within a computer cluster
Support real time data stream
Built-in Machine Learning library
Support different languages (Scala, Java, Python, R)
Support different data sources (SQL, Hive, HBase, 
Cassandra, Oracle, etc)
Open source and free
Available through public cloud services (Amazon 
AWS, Microsoft Azure, IBM, etc) and through new 
PNNL institutional cloud system.



Spark research cluster based on PNNL 
cloud
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Current configuration
20 nodes
RAM 512 Gb

Recently upgraded 
to Spark 2.2

Cluster will be upgraded 
to 1 Tb RAM



Cloud based ML-PMU Framework
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PMU data stream
PNNL receives PMU data 
stream from Bonneville Power 
Administration

12 PMUs 
Multiple channels (Voltage and 
Current Phasors, Frequency, 
ROCOF)

PMU Data stored in PDAT 
format

PDAT format developed by 
BPA
Based on IEEE Std. 
C37.118.2-2011 
Binary files
Each file contains 1 minute of 
data
One file ~ 5 MB
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Data frame organization defined by IEEE C37.118.2



Ongoing work
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Python (PySpark) modules:
PDAT data extraction 
Data processing

Bad data
Missing points
Outliers

Event detection
Frequency events
Voltage events

Features extraction and analysis
Wavelet
Dynamic regression 
Principal component analysis



PDAT data extraction

Read information from PDAT 
and creates SPARK data 
frames
Store information in Hive or 
Parquet tables
Implemented in PySpark that 
allows parallel processing of 
multiple PDAT files
Significantly increased 
performance

To read information for 1 
hour takes about 20 
seconds (20 nodes cluster)
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Event detection (threshold based)

User specified
Delta frequency
Event duration

Cross validation signal checks 
to avoid false alarms
Spark usage significantly 
increases the computational 
throughput of the application
Processing of 1 day takes 
about 5-7 minutes (processing 
the same dataset using a PC 
takes about 1 hour)

May 8, 2018 11

Si
gn

al

Time

Min 
threshold

Min duration

Moving Window
Average frequency



Examples of Detected events

Frequency events
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Examples of Detected events

Voltage event
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Examples of Detected events

Voltage event
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Wavelet analysis 

Wavelets transform: 
Use small waves, so called wavelets, to provide  localized time-frequency 
analysis.
Scaling (stretching/compressing it; frequency band) and shifting 
(delaying/hastening its onset) original waveform

Low scale compressed wavelets high frequency
High scale stretched wavelets low frequency

Assign a coefficient of similarity
Benefit for the non-stationarity signals

“The wavelet transform is a tool that cuts 
up data, functions or operators into 
different frequency components, and then 
studies each component with a resolution 
matched to its scale”

---- Dr. Ingrid Daubechies, 
Lucent, Princeton U



Offline Anomaly Detection based on 
Wavelet Analysis
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spatiotemporal 
correlations

MRA decomposition Tree



Anomaly Scoring and Verification

The anomaly score matrices were calculated across 12 PMUs at 
multiresolution levels for each PMU attribute.
Red line shows a historical recorded event at each multi-resolution level 
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(a) Frequency signal

(b) MRA wavelet 
coefficient at D1;

(c) MRA wavelet 
coefficient at D2;

(d) MRA wavelet 
coefficient at D3. 

More than 3 sequential points exceeded 
the threshold and counted as an event. 
+1 added to the anomaly score matrices.



Examples of Detected Anomalies (1)
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An example of detected 
PMU frequency anomaly 
where the PMUs have 
consistent behaviors and 
strong cross-correlations. 

An example of detected 
PMU voltage anomaly 
where the PMUs have 
consistent behaviors and 
strong cross-correlations. 

Red marks: detected events 
Green marks: recorded historical 
events by NERC



May 8, 2018 19

Examples of Detected Anomalies (2)

Example of voltage event detected at different local units. 
The detected events for each unit are marked in red. 

• Local anomalies

• 7 out of 12 units did 
not evidence the same 
anomalies. 

• The first event 
occurred at unit 9 only

• The second event 
happened at units 3, 5, 
8 and 10, respectively. 
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Principal Component Analysis (PCA) 

PCA Biplots of detected 
events using different 
PMU attributes. The 
historical recorded 
events are circled in 
blue. 

The left panel shows the first 
two principal components of 
three attributes (voltage, angle 
and frequency). 

Strong anomalies in both 
frequency and angle variation

outstanding voltages 
anomalies The right panel shows the 

PCA by removing the 
redundant angle variation. 
The voltage and frequency 
are nearly orthogonal 
factors 
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Online Anomaly Detection Based on 
Dynamic Machine Learning

Flow chart of online detection framework for 
PMU measurements. 

• The second order polynomial dynamic regression 
model is built sequentially for PMU of subsequent 5-
minute time windows. Kalman filter is applied to 
compute filtered values of the state vectors, together 
with their covariance matrices. 

• The training and prediction errors are obtained by 
model fitting and short-time prediction using available 
PMU observations.

• For the short-term predictions, we assume that the 
prediction errors and the training errors follow the 
same distributions. The cumulative probability 
distribution (CDF) of prediction errors is approximated 
to be normal and characterized by the mean and 
variance of the training errors.

• A threshold of 𝑃𝑃𝑖𝑖 can be used to screen the anomaly 
candidate points in the PMU data, based on whether its 
corresponding exceedance probability is greater than 
the threshold. 
𝑃𝑃𝑖𝑖 𝑋𝑋 ≤ 𝑥𝑥 = max(𝑃𝑃𝑖𝑖 𝑋𝑋 ≤ 𝑥𝑥 , 1 − 𝑃𝑃𝑖𝑖 𝑋𝑋 ≤ 𝑥𝑥 )
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Dynamic Model Evaluation: Root Mean 
Square Error(RMSE) 

Averaged training RMSE across 12 Units Averaged prediction RMSE across 12 Units

The red vertical lines 
show temporal 
locations of recorded 
events

Training RMSE: 
• RMSEs shows the satisfactory goodness of 

fit of the dynamic model.
• RMSEs are generally under 0.12% for the 

non-events time period.
• RMSEs increase slightly during the actual 

events occurred 

Prediction RMSE:
• RMSEs shows the accurate predictions of next 5-sec 
• RMSEs over 1.5% are highly likely to have some 

abnormal system behaviors
• RMSEs are relatively high (>2%) for the historical 

recorded events periods
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Example of Event Detected and Detection Rate

Historical recorded event and anomaly 
event detected by the framework

• For such an actual event, the deviations or 
relative errors increase with the time into the 
events

• The exceedance probability of the relative 
errors and the duration are compared to the 
thresholds to confirm anomalies. 

The detection rates of historical recorded events

• 28-day PMU data with 25 historical recorded events 
are used to evaluate the framework

• Detection rates are calculated for different 
combinations of probability and duration threshold 

• The optimal thresholds setting: 
 exceedance probability threshold is 3.5σ (i.e., the 

prediction error is beyond 3.5 times of the 
corresponding standard deviation σ).

 duration threshold is 5-points (i.e., seconds), which 
means at least 5 sequential points need to pass the 
screening in order to confirm an event



Preliminary Results
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Spark cluster for ML and PMU (big data) analysis was deployed. 
It is based on the PNNL institution cloud system
PMU data has been collecting in PDAT format (PMU data stream 
from PBA to PNNL EIOC)
Methodologies for both online and offline anomaly detection have 
been developed

Enhanced robustness to bad data
Python (PySpark) modules are under development

PDAT data extraction
Event detection (based on thresholds)
Wavelet anomaly detection
Dynamic nonlinear model and Kalman filter based online detection 
framework 
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