

Input Estimation for Power Plant Model Validation

Josh Wold, Dan Trudnowski, Matt Donnelly – Montana Tech

Work supported by DOE award: DE-SC0012671

Playback Simulation

- PMU terminal data injected into simulation, output compared to measured signals
- Other model inputs typically initialized using pre-disturbance data and held constant for duration of simulation

What if inputs change?

 Hydro Unit – real power clearly shows response to reference power change

Parametric Input Estimation

• Absent plant-level measurements of reference inputs, need to estimate them to match simulation conditions to reality

Plant Dynamics (discretized)

$$x_{k+1} = f_d(x_k, u_k, \theta)$$
$$y_k = g_d(x_k, u_k, \theta)$$

Input Vector

$$u_{k} = \begin{bmatrix} V_{k} \\ f_{k} \\ V_{ref,k} \\ P_{ref,k} \end{bmatrix}$$

$\frac{\text{Parameter Estimation}}{V(\theta) = \frac{1}{2} \sum_{k=1}^{N} (\bar{y}_k - y_k(\theta))^2}$

Estimate Input Function

• Treat reference power as a step function and estimate amplitude and step time along with model params

$$P_{ref,k+1} = P_{ref,k} + \theta_1 \delta(k - \theta_2)$$

A Case Study

 Attempted to add reference power steps at relevant points – response to them is extremely slow

Turbine Governor Model (hygovr)

 Bottleneck is upper right feedback loop time constant is 40 seconds

Case Study cont.

 Increased speed of integral loop, but response to frequency deviation now too fast.

Case Study cont.

Simultaneously estimated input parameters, T_d and K_l

Summary

- Frequency deviation still needs a dominant time constant of ~40 seconds, must come in path before sum
- Could not have learned this from any simulation with fixed P_{ref}

Conclusions/Future Work

- Narrow view: Input estimation allows for the use of events with changing reference inputs. Value is twofold:
 - 1. More events can be used for validation.
 - 2. New **types** of events can be used, which may excite the model in ways that may expose model problems that cannot be otherwise seen.
- Broad view: Moving toward a framework where every PMU data point can be used to inform the validity of the model. Clearly, input estimation is a key component because for most plants, unmeasurable quantities have an effect on the output of the simulation model.

Extra Slide

