

Applicability of Synchrophasor Data for Fault Analysis

N. Perera ERLPhase Power Technologies Winnipeg, MB Canada

© ERLPhase Power Technologies Ltd. All Rights Reserved.

Outline

- Introduction
- PMU data for fault analysis
 - Sequence components
 - Impedance based fault location algorithms
- Factor considered
 - Effect of the filter type (P/M)
 - Effect of the fault duration (Number of cycles)
- Conclusions

Introduction

- The synchrophasor standard C37.118.1a-2014 presents two performance class filters
 - P: ~2 cycle duration filter
 - M: ~5 cycle duration filter
- This presentation focuses on the applicability of the P and M class synchrophasor data for fault analysis purposes.
- The synchrophasor data captured from an industrial PMU implemented as per the latest PMU standard was used for this analysis.
- Data is captured using in-built PDC program available with the device.

• 2 cycle faults

• 3 cycle faults

• 4 cycle faults

• 5 cycle faults

• Summary

Duration (cycles)	Zero Seq. Voltage (V)	Zero Seq. Current (A)
2	9.5 V	0.72 A
3	10.1 V	0.83 A
4	10.1 V	0.83 A
5	10.1 V	0.83 A

• 2 cycle faults

9

• 3 cycle faults

• 4 cycle faults

• 5 cycle faults

• 6 cycle faults

• Summary

Duration (cycles)	Zero Seq. Voltage (V)	Zero Seq. Current (A)
2	8.2 V	0.71 A
3	10.9 V	0.9 A
4	10.4 V	0.87A
5	10.1 V	0.83 A
6	10.1 V	0.83 A

Impedance Based Fault Location : M Class

- Method: Takagi Algorithm
 - PMU data (120 samples/sec = 2 samples/cycle)
 - M class (C37.118.1a-2014)
- 3 cycle fault
 - Actual: 3 km; Estimated: 6.7 km

Impedance Based Fault Location : M Class

• Effect of the fault duration (single phase to ground fault)

Duration (cycles)	Actual Distance (km)	Estimated Distance (km)
3	3.0 km	6.7 km
4	3.0 km	3.8 km
5	3.0 km	3.9 km
6	3.0 km	4.0 km

Summary

- Use of synchrophasor data for fault analysis purposes was investigated for both P and M filters (C37.118.1a -2014)
 - Sequence components for fault level detection
 - Impedance based fault location estimation
- Summary for P Class filters
 - 2 cycle data provides less than 5% error
 - 3 cycle data provides less than 1% error
- Summary for M Class filters
 - 4 cycle data provides less than 5% error
 - 5 cycle data provides less than 1% error

Thank you ! Questions ?