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Why do we need to introduce 
Machine Learning techniques?

• New challenges for reliability
• Deregulation (central -> local)
• Variable Energy Resources 
• Passive -> Active (consumers)
• “Reliability indexes” (20th century

state of the art) cannot handle ever 
increasing uncertainty, fluctuations

• New opportunities/drivers
• Better/new hardware
• Smarter optimization/control
• Better measurements  = PMU +

• Solution = Data Analytics, 
Machine Learning 

• = software tools to 
handle all of the above

• towards “ML-based 
reliability indexes”

• More data

per  1m end-users
arxiv:1703.02497



Aiming at (in 5-10 years) 
Enhancing

real-time monitoring situational awareness and control

under changing system conditions 

making

SCADA/PMU/data-driven and system-wide

Machine Learning (Applied Statistics) technology

a standard routine for power system utilities/practitioners



Expected outcome (in 3 years) 
Machine Learning approaches 

• to identify parameters of 
• transmission network (static & dynamic)
• generators (with new controllers) & loads (passive & active)

• to detect network topology
• to estimate state (static & dynamic)

• develop taxonomy of events/anomalies
• localize events/anomalies  

Demonstrate on models of  utility partners
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Overall Project Objective

Expected Outcomes  --- Machine Learning and Analytics (MLA) toolbox

 Modeling of the system stochastic and dynamic phenomena  

 New algorithms

 State and Parameter estimation
 Event localization

 Data-driven (synthetic             actual, PMU-measured) 

 Validation and Integration into industry-grade platform(s) 

2016

2018



Physics (of Power Grid)
Informed Machine Learning
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Accuracy

Estimator
• targeted prediction with 

enough of accuracy
(in the focus of our 

today’s presentation)

Explorer
• model reduction

on ML-steroids
(working on it)

Reinforcer
• active exploration,  

e.g. for control, 
optimization 

(early stage)
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Prediction tractability

Physics
Informed
Tuning 

Physics-Free 
Machine Learning

Physics Informed
Machine Learning

Data-to-
predictions
approaches



Project Highlights:

• Dynamic Parameter Identification
(lead Dr. Lokhov – LANL)

• Detective   work with PMU data                                         

(lead Prof. Bienstock – Columbia U)
• More later today

- 3-4pm "after NASPI” in the main conf. room
also over webex

everybody welcome !!



Dynamic State Matrix Reconstruction
PI: Andrey Lokhov (LANL) 

What: identification of parameters of dynamic swing equations:  

Over entire network from real-time synchronized PMU measurements

Disadvantages of current practices:
• Semi-manual verification of parameters
• Usage of PMU data limited to rare events
Applications:
• Assessment of system stability
• Model validation & parameter calibration
• Detection of forced oscillations
• Further use in optimization & control 



Dynamic State Matrix Reconstruction

How: Maximum likelihood based regression with strong statistical guarantees    

Theorem: expected parameter
Estimation error decays as 1/√tobs in the
regime of validity of linearization 

Important parameters:
number of data points T
time difference between data points Δt
total observation time tobs = T Δt

Synthetic PMU measurements time series:

Sampled at the smallest resolution Δt = 1/60 sec (1 cycle)  



Dynamic State Matrix Reconstruction

Results: Empirical results on the error

Implementation:
near real-time matrix inversion (UML) 

&  least-squares optimization with constraints (CML) using standard optimization solvers
Advantages: 
simple but principled and rigorous approach, allows for an easy inclusion of extensions: 
slow parameter variation, uncertainty in topology, partial observations   



Dynamic State Matrix Reconstruction

Path forward:

• Tests on real data 
• Testing robustness to statistical models: 

• space & time correlations
• non-Gaussianity
• non-stationarity 
• higher-order models

• Learning statistics of loads
• Dealing with partial observations 

(CDC 2018, reduced model,
more details 3-4 pm later today)

• Probing proximity to instability

Application: estimation of critical eigenvalues of Ad

Lokhov, Vuffray, Shemetov, Deka, Chertkov PSCC 2018



Dynamic State Matrix Reconstruction

NASPI application: detection and localization of forced oscillations 

Leading existing efforts:
• Dan Trudnowski (Montana Tech): RMS energy method, energy flow
• Mani V. Venkatasubramanian (Washington State): data analytics, oscillation mode shape 
• Slava Maslennikov (ISO New England): energy flow method

Principle difficulties:
• Hardness of accurate networked localization if oscillations excite one of the natural modes  

Approach based on proposed machine learning techniques:
• Learning parameters of dynamic swing equations
• Explicit inclusion of low-frequency forcing sources
• Identification of modes in the system
• Network based localization



PMU data (historical):
• Midwest Utility 
• 200 nodes,  2 years  

What:

• See what we can do with 
real data, e.g.

• Basic, practical statistics

• Localize, time stamp events

• Classify events 
• Physics + Optimization

• Develop  On-line algorithms

“Detective”  approach with Real PMU data
(Daniel Bienstock, Columbia University)



“Detective”  approach with Real PMU data
(PI: Daniel Bienstock, Columbia University)

How   [basic statistics]:
• Finding “uneventful” 

periods 

• frequency, phases, voltages

• Subtract sliding mean(s),
normalized,
with superimposed
standard deviations



“Detective”  approach with Real PMU data
(PI: Daniel Bienstock, Columbia University)

How   [basic statistics]:

• Subtract sliding mean(s),
normalized,
with superimposed
standard deviations

• Gaussianity
test fails



“Detective”  approach with Real PMU data
(PI: Daniel Bienstock, Columbia University)

How   [basic statistics]:

• Subtract sliding mean(s),
normalized,
with superimposed
standard deviations

• Gaussianity
test fails

• Auto-correlation -> multi-scale, 
sustainable oscillations



How:
• Analysis of covariances

= PCA +
• Tracking it on-line
• “Light” version

= streaming PCA
• see data only once

don’t store
(Non-Stationary Streaming PCA, 
Shukla, Yun and Bienstock, NIPS 2017)

“Detective”  approach with Real PMU data
(PI: Daniel Bienstock, Columbia University)



Work in Progress [Path Forward]:
• Spatio-temporal correlations 

(towards good features for clustering)
• Time-delayed PCA 

• Automatic separation of jumps, transients, ambient fluctuations 
• Towards automatic on-line classification of events

[line, generator, transformer; forced/transient; inside/outside the area]

• Cluster algorithms with features from the PCA analysis
• Auto-encoders, LTVSM +++  

Deep Learning versions  =  “nonlinear PCA” 

“Detective”  approach with Real PMU data
(PI: Daniel Bienstock, Columbia University)



Other projects (pipeline)

PMU based Machine Learning [fast algorithms] for:

• Topology & parameter reconstruction
• Failures in areas with low observability 
• Higher order models of generators (calibration, reduced modeling)
• Aggregated dynamics & statistics of distribution networks
• Physics-preserving graph reduction
• Cloud based framework + validation …

• Looking for your feedback + collaborations within NASPI
• Please join us 3-4 pm (in the main room) for further discussions


	Grid Modernization LC, Cat 2:��Advanced Machine Learning for Synchrophasor Technology
	LANL+PNNL+LBNL+Columbia U+GridCons.
	Why do we need to introduce Machine Learning techniques?
	Aiming at (in 5-10 years) 
	Expected outcome (in 3 years) 
	Overall Project Objective
	   Physics (of Power Grid)�                 Informed  Machine Learning
	Slide Number 8
	Project Highlights:
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	“Detective”  approach with Real PMU data�(Daniel Bienstock, Columbia University)
	“Detective”  approach with Real PMU data�(PI: Daniel Bienstock, Columbia University)
	“Detective”  approach with Real PMU data�(PI: Daniel Bienstock, Columbia University)
	“Detective”  approach with Real PMU data�(PI: Daniel Bienstock, Columbia University)
	“Detective”  approach with Real PMU data�(PI: Daniel Bienstock, Columbia University)
	“Detective”  approach with Real PMU data�(PI: Daniel Bienstock, Columbia University)
	Other projects (pipeline)

