DOE/OE Transmission Reliability Program

Grid Modernization LC, Cat 2:

Advanced Machine Learning for Synchrophasor Technology

Michael (Misha) Chertkov

Los Alamos National Laboratory chertkov@lanl.gov April 26, 2018 -- presentation at NASPI

LANL+PNNL+LBNL+Columbia U+GridCons.

Misha Chertkov

Daniel Bienstock

Andrey Lokhov

Marc Vuffray

Gil Zussman

Deepjyoti Deka

Pavel Etingov

Ciaran Roberts

Dejan Sobajic

Why do we need to introduce Machine Learning techniques?

- New challenges for reliability
 - Deregulation (central -> local)
 - Variable Energy Resources
 - Passive -> Active (consumers)
 - "Reliability **indexes**" (20th century state of the art) cannot handle ever increasing uncertainty, fluctuations
- New opportunities/drivers
 - Better/new hardware
 - Smarter optimization/control
 - Better measurements = PMU +
 - More data

reliability indexes"

Pacific Northwest

Aiming at (in 5-10 years)

Enhancing

real-time monitoring situational awareness and control

under changing system conditions

making

SCADA/PMU/data-driven and system-wide

Machine Learning (Applied Statistics) technology

a standard routine for power system utilities/practitioners

Expected outcome (in 3 years)

Machine Learning approaches

- to identify parameters of
 - transmission network (static & dynamic)
 - generators (with new controllers) & loads (passive & active)
- to detect network topology
- to estimate state (static & dynamic)
- develop taxonomy of events/anomalies
- localize events/anomalies

ormal/ambient

Overall Project Objective

2016

Physics (of Power Grid) Informed Machine Learning

Project Highlights:

- Dynamic Parameter Identification (lead Dr. Lokhov – LANL)
- Detective work with PMU data

(lead Prof. Bienstock – Columbia U)

• More later today

- 3-4pm "after NASPI" in the main conf. room also over webex

everybody welcome !!

Dynamic State Matrix Reconstruction PI: Andrey Lokhov (LANL)

What: identification of parameters of dynamic swing equations:

$$M_i \dot{\omega}_i + D_i \omega_i = -\sum_{(i,j)\in\mathcal{E}} \beta_{ij} (\delta_i - \delta_j) + \delta P_i$$

 $\delta_i = \theta_i - \theta_i^{(0)}$: phase deviations; $\delta P_i = P_i^{(m)} - P_i^{(e)}$: power deviations; and $\omega_i = \dot{\delta}_i$

Over **entire network** from real-time synchronized PMU measurements

Disadvantages of current practices:

- Semi-manual verification of parameters
- Usage of PMU data limited to rare events

Applications:

- Assessment of system stability
- Model validation & parameter calibration
- Detection of forced oscillations
- Further use in optimization & control

Lawrence Livermore National Laboratory

How: Maximum likelihood based regression with strong statistical guarantees

Important parameters:

number of data points T time difference between data points Δt total observation time tobs = $T \Delta t$

Theorem: expected parameter Estimation error decays as 1/Vtobs in the regime of validity of linearization

Synthetic PMU measurements time series:

Sampled at the smallest resolution $\Delta t = 1/60 \text{ sec} (1 \text{ cycle})$

awrence

Results: Empirical results on the error

Implementation:

near real-time matrix inversion (UML)

& least-squares optimization with <u>constraints</u> (CML) using standard optimization solvers <u>Advantages:</u>

simple but principled and rigorous approach, allows for an easy inclusion of extensions:

slow parameter variation, uncertainty in topology, partial observations

Lokhov, Vuffray, Shemetov, Deka, Chertkov PSCC 2018

Path forward:

- Tests on real data
- Testing robustness to statistical models:
 - space & time correlations
 - non-Gaussianity
 - non-stationarity
 - higher-order models
- Learning statistics of loads
- Dealing with partial observations (CDC 2018, reduced model, more details 3-4 pm later today)
- Probing proximity to instability

Application: estimation of critical eigenvalues of Ad

NASPI application: detection and localization of forced oscillations

Leading existing efforts:

- Dan Trudnowski (Montana Tech): RMS energy method, energy flow
- Mani V. Venkatasubramanian (Washington State): data analytics, oscillation mode shape
- Slava Maslennikov (ISO New England): energy flow method

Principle difficulties:

• Hardness of accurate networked localization if oscillations excite one of the natural modes

Approach based on proposed machine learning techniques:

- Learning parameters of dynamic swing equations
- Explicit inclusion of low-frequency forcing sources
- Identification of modes in the system
- Network based localization

What:

- See what we can do with real data, e.g.
- Basic, practical statistics
- Localize, time stamp events
- Classify events
 - Physics + Optimization

PMU data (historical):

- Midwest Utility
- 200 nodes, 2 years

Develop On-line algorithms

How [basic statistics]:

- Finding "uneventful" periods
- frequency, phases, voltages
- Subtract sliding mean(s), normalized, with superimposed standard deviations

How [basic statistics]:

- Subtract sliding mean normalized, with superimposed standard deviations
- Gaussianity test fails

How [basic statistics]:

- Subtract sliding mean(s), normalized, with superimposed standard deviations
- Gaussianity test fails

 Auto-correlation -> multi-scale, sustainable oscillations

Pacific Northwest

Lawrence Livermore National Laboratory

How:

- Analysis of covariances
 = PCA +
- Tracking it on-line
- "Light" version
 = streaming PCA
 - see data only once don't store

(Non-Stationary Streaming PCA,

Shukla, Yun and Bienstock, NIPS 2017)

Work in Progress [Path Forward]:

• Spatio-temporal correlations

(towards good features for clustering)

- Time-delayed PCA
- Automatic separation of jumps, transients, ambient fluctuations
- Towards automatic on-line classification of events [line, generator, transformer; forced/transient; inside/outside the area]
 - Cluster algorithms with features from the PCA analysis
 - Auto-encoders, LTVSM +++ Deep Learning versions = "nonlinear PCA"

Other projects (pipeline)

PMU based <u>Machine Learning</u> [fast algorithms] for:

- Topology & parameter reconstruction
- Failures in areas with low observability
- Higher order models of generators (calibration, reduced modeling)
- Aggregated dynamics & statistics of distribution networks
- Physics-preserving graph reduction
- Cloud based framework + validation ...

- Looking for your feedback + collaborations within NASPI
- Please join us 3-4 pm (in the main room) for further discussions

