Enhancing the System Resiliency using PMU based RAS Scheme

North American SynchroPhasor Initiative - 24th April 2018

Tushar, V. Vignesh, <u>P. Banerjee</u>, A. Srivastava The School of Electrical Engineering and Computer Science, Washington State University

Introduction

- In order to minimize the wind power curtailment and protect the transmission lines from overload or stability problems, RAS can be deployed for faster control actions.
- Existing RAS are hard coded based on pre-determined control actions. These are non-optimal and controls are designed for local level but may not be good at system level.
- A new dynamic and adaptive RAS is needed using measurements and system status to make control actions.
- New fault-tolerant computational approach needs to be developed to provide fast and correct data to dynamic and adaptive RAS

Classification of RAS -Based on architecture

Classification of RAS -Based on data

Formulation of Wind Curtailment RAS

RAS is developed as a linear programming based optimization of DC power flow

$$P_{Gen} - P_{Load} = B * \theta$$

$$\theta = B^{-1}(P_{Gen} - P_{Load})$$

$$P_{ij} = B_{ij}(\theta_i - \theta_j) \le LR_{ij}$$

Objective function

$$Max f(x) = \sum_{i=1}^{N_G} x_i * P_{G_i}$$

Subject to line constraints

Maximize wind connected to the grid but with no overload and no voltage violation

Specifications and Functions for Wind Curtailment RAS

Key modules in Wind curtailment RAS are:

Why resiliency?

Traditionally, the performance of power system is quantified using reliability indices like SAIDI, SAIFI, etc.

- Extreme events and real-time operating conditions are not considered in the statistics of reliability indices.
- In this study, resiliency of power systems is defined as the system's ability to maintain continuous power supply to priority/critical loads (as defined by the user) under disruptive events.

Source-Path-Destination (SPD) index

This index takes into account the network configuration and redundancy in connectivity along with the physical-based electric flow properties (resistance offered to electric flow).

$$\text{SPD index} = \sum_{i=1}^{N_G} \frac{k_i^2}{\text{BVI}_i * \text{HI}_i * (1 + \text{Average cost}_i)}$$

Branch Vulnerability Index

 \succ It is the measure of number times a branch appears in 'k' sourcedestination paths.

$$\mathsf{BVI}_i = \sum_{N_L} \frac{n_k}{k}$$

Hops Index

It is the measure of number of hops (transmission lines, transformers, etc.) linking 'k' source-destination paths.

$$\mathrm{HI}_i = \frac{\sum n_{lk}}{k}$$

Electrical based indices

The existence of a connection between source (generator) and destination (substation) doesn't always imply that power can be transferred. Thus, electrical factors need to included while computing the resiliency metric for power systems.

Three factors that are included are:

- MW availability index
- MVAr availability index
- Loss of load index

MW availability index is the measure of availability of MW power from different generation sources.

 $\text{MW} \text{ availability index} = \sum_{i=1}^{N_G} \frac{\text{MW} \text{ availability}_i * \text{Generator Availability}_i}{\text{MW} \text{ critical/priority load}}$

MVAr availability index is the measure of availability of MVAr power to sustain voltages at distribution level.

MVAr availability index =
$$\sum_{N_{RR}} \frac{\text{MVAr availability}}{\text{MVAr priority/critical load}}$$

Electrical based indices

Loss of Load Index is the measure of total amount of critical/priority load being supplied by the system.

 $\textit{Loss of load index} = \frac{\textit{Actual priority load supplied}}{\textit{Total priority load}}$

Resiliency metric

All the above indices are combined together using Analytical Hierarchical Process into a single resiliency metric.

The weights are the eigenvector of the combination matrix that is defined by the user indicating the co-relation between different indices.

Enabling resiliency in transmission systems

Cyber-physical RAS simulations test bed

IEEE 14 bus system – Bus 10

Bus 10	SPD index	MW availability index	MVAr availabilit y index	Loss of load index	Resiliency
Base case	23.315	37.908	68.830	1	1.000
Excess wind generation (without RAS)	7.539	39.375	63.097	1	0.851
Excess wind generation (with RAS)	23.315	39.173	68.780	1	1.002

Performance of RAS during a cyber attack

Normal condition	Wind Gen-1	Wind Gen-2	Wind Gen-3
MW generation data input during excessive wind generation (MW)	37.52	97.78	71.72
MW generation with centralized and de-centralized RAS under normal operation	11.75	24.22	67.64

Cyber attack (False data injection)	Wind Gen-1	Wind Gen-2	Wind Gen-3
MW generation data input to RAS during excessive wind generation (MW)	37.52	60	71.72
MW generation with centralized RAS under normal operation		FAILED	
MW generation with distributed and RAS under normal operation	18.32	20.97	16.14

Modified IEEE 39 bus system

IEEE 39 bus system

Bus 6	SPD index	MW availability index	MVAr availability index	Loss of Ioad index	Resiliency
Base case	43.179	59.49	94.065	1	1.000
Excess wind generation (without RAS)	17.881	51.461	103.375	1	0.863
Excess wind generation (with RAS)	43.179	60.422	101.669	1	1.004
Bus 8	SPD index	MW availability index	MVAr availability index	Loss of Ioad index	Resiliency
Base case	47.728	9.518	12.542	1	1.000
Excess wind generation (without RAS)	12.5113	8.234	13.783	0.806	0.703
Excess wind generation (with RAS)	47.728	9.668	13.556	1	1.004

Acknowledgement

We would like to thank CREDC, DOE ARPA-E, and PSERC for supporting this work

Thank You

