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Modes of Oscillations in the WECC

• Generators oscillating against each other

• Occurs naturally in the system

• Low damped modes can cause system breakup and wide area 

blackouts

• “NSA Mode” nominally near 0.2 to 0.25 Hz;

• “NSB Mode” nominally near 0.35 to 0.4 Hz;

• “EWA Mode” nominally near 0.4 to 0.5 Hz;

• “BC” mode nominally near 0.6 Hz; and,

• “Montana” mode nominally near 0.8 Hz.



Anticipated Benefits from Damping Control

• Improved system reliability

• Additional contingency in a stressed system condition

• Increasing the power transfer of the California-Oregon Intertie (COI). Reduced need 

for new transmission lines (capital cost savings > $1M/mile)

• Avoidance of costs from oscillation-induced system breakups (1996 outage costs > 

$1B)



Control Strategy based on PDCI Modulation

Control Objectives:

• Dampen all modes of interest for all operating 

conditions w/o destabilizing peripheral modes

• Do NOT worsen transient stability (first swing) 

of the system

• Do NOT interact with frequency regulation
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Damping Controller 
Hardware

Three primary components

1. NI PXI real-time unit

2. Windows server

3. Watchdog circuit



Supervisor Control Design Philosophy

Design was driven by the need to detect and respond to certain system 

conditions in real-time as well as asynchronous monitoring functions 

at slower than real time



Bumpless Transfer

Seamlessly switch between system states as to not inject step 

functions into the system



time
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Communication and Delays

Name Mean Range Note

PMU 

Delay
44 40 – 48

Dependent on PMU settings. Normal 

distribution.

Communication 

Delay
16 15 – 40 Heavy tail

Control 

Processing 

Delay

11 2 – 17

Normal around 9 ms, but a peak at 16 ms 

due to control windows when no data 

arrives (inconsistent data arrival)

Command 

Delay
11 11 Tests were consistent, fixed 11 ms

Effective Delay 82 69 – 113 Total delay

Delays well within our tolerance



Data considerations – Data dropout

• PMUs on the BPA network 

rarely have data dropouts, but 

the controller must account 

for these. 

• Supervisory system catches

data dropouts and disables 

that controller instance (16 

total)



Data considerations – Time alignment

• The North and South 

measurements need to be 

from the same PMU 

timestamp.

• Supervisory system time 

aligns the data. If data is too 

far apart, the control instance 

is disabled



Data considerations – Inconsistent data arrival

• PMUs have consistent 

average reporting rates, set to 

60 Hz for BPA’s system

• However, the actual data

leaving the PMU is not

always every 16.6667 ms.

• Inconsistent data must be 

handled properly.



Data considerations – Inconsistent data arrival with 
time-alignment

• Ideal case

• Worst case, inconsistent data

arrival without time-alignment.

• Inconsistent data arrival with 

time-alignment.



PMU-based Feedback Control has the Potential
to Significantly Improve Oscillation Damping

Simulation of BC-Alberta 
separation (Cranbrook-
Langdon intertie)

• With damping 
control, the 
oscillations decay 
very quickly.



First North America Tests using PMU Feedback 
Control: Open-Loop

• Open-loop probing tests: Controller injects a power 

command to disturb the system. 

• Test if the controller responds to the disturbance correctly



Open-Loop Forced Oscillation Tests

• The controller injects a forced 

oscillation, and measure the

controllers output.

• Traces on top of each other 

mean no interaction.

• As expected controller 

interacts and improves forced 

oscillations in the inter-area

frequency range

0.025 Hz

0.3 Hz

1.0 Hz 



First North America Tests using PMU Feedback 
Control: Closed-Loop

• Closed-Loop Chief Joe Brake Test

• Adding a 1400 MW load in central Washington State.

• Test if the controller improves damping and does no harm to the system

• Improved damping of 4-5%

Chief Joseph 
Brake Pulse 

applied

Faster 
damping of 
oscillations

Reduction in 
overshoot



First North America Tests using PMU Feedback 
Control: Closed-Loop

Frequency Difference

North to South
PDCI Power Flow



Test results indicate gains in 9 - 12 MW/mHz range
are a good tradeoff in

damping performance vs. excitation of DC dynamics

May 16, 2017 Tests, Square Wave Response, 
Gain = 18 MW/mHz

19



Conclusions

• Theory  working prototype < 2 years

• Two phases of tests conducted on PDCI (Sept 2016 and 

May 2017) have shown significant improvement in N-S B 

mode damping

• Test results have shown no degradations in damping of 

peripheral modes

• Test results have consistently confirmed the findings of 

simulation studies

• Supervisory system has performed exactly as expected

• Results in all facets have been very encouraging


