Special Reliability Assessment on Oscillatory Modes in North American Interconnections

Mani V. Venkatasubramanian, Ryan Quint and John Skeath
NERC
NASPI Meeting, Albuquerque, NM
April 2018
Special Reliability Assessment

We thank all the reliability coordinators for providing PMU data.
Objectives

- Analyze **PMU event data** from Eastern, Western, and Texas interconnections
- Inter-Area Modes: what modes, damping levels, mode shapes, energy...
- Seasonal properties
- Interactions with forced oscillations
- PMU data for 8 events in each interconnection collected
- Compare with model based simulations
Report Outline

- Inter-Area Oscillations Fundamentals
- Analysis Techniques
- Event Analysis Results: Eastern, Western and Texas Interconnections
- Findings, Conclusions and Recommendations
- Appendices: Analysis methods
Texas Interconnection Event 5

Generator outage event at 00:11:48
Frequency hits minimum 59.80 Hz at 00:11:51
Recovers to 60 Hz by 00:16:09
Phase Angles Relative to Center

South Texas

North Texas
Analysis using Relative Bus Phase Angles (wrt Center)

Ringdown Analysis window from 00:11:49 to 00:11:56
Ringdown Analysis and Reconstructed Signals

South Texas

North Texas
Ringdown Analysis using ERA

<table>
<thead>
<tr>
<th>Mode Frequency (Hz)</th>
<th>Damping Ratio (%)</th>
<th>Relative Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>11</td>
<td>95</td>
</tr>
</tbody>
</table>

- Modes with relative energy less than 10% are not shown.
- 13 Relative bus voltage phase angle signals used.
- HTLS, ERA, Matrix Pencil and Prony agree for the main 0.67 Hz mode.
- 7 second Analysis window.
Mode Shape of the Dominant Mode

North East TX

South East TX

0.67 Hz at around 11% damping ratio
Simulated Case 1 Frequencies wrt Panda

Northwest Texas

South Texas
Ringdown Analysis Results for Window 2 to 7 sec

<table>
<thead>
<tr>
<th>Method</th>
<th>Prony</th>
<th>Matrix</th>
<th>HTLS</th>
<th>ERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1 Freq</td>
<td>0.713</td>
<td>0.713</td>
<td>0.713</td>
<td>0.713</td>
</tr>
<tr>
<td>Mode 1 Damp Ratio</td>
<td>9.16</td>
<td>8.67</td>
<td>8.67</td>
<td>8.67</td>
</tr>
<tr>
<td>Mode 1 Energy (%)</td>
<td>96.71</td>
<td>99.10</td>
<td>99.10</td>
<td>99.10</td>
</tr>
</tbody>
</table>

- 51 Bus Frequencies (Panda 345 bus freq used as reference)
- Analysis window 2 to 7 seconds
- NORTHDC7_345 and EDISON7A_345 dropped from analysis
HTLS Mode Shape of 0.71 Hz Mode

Northwest Texas

South Texas
WECC Case 1 Arizona Bus Frequency

Colorado generator outage event at 00:13:55
Frequency hits minimum 59.83 Hz at 00:14:01
Recovers to 60 Hz by 00:20:39.
Montana Bus Frequency
Phase Angles Relative to COI bus

Alberta

British Columbia

Arizona
Analysis using Relative Bus Frequencies (wrt COI bus)

Ringdown Analysis window from 00:13:56 to 00:14:04
Ringdown Analysis and Reconstructed Signals

Alberta

British Columbia

Arizona
Ringdown Analysis using HTLS

<table>
<thead>
<tr>
<th>Mode Frequency (Hz)</th>
<th>Damping Ratio (%)</th>
<th>Relative Energy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.42</td>
<td>12</td>
<td>51</td>
</tr>
<tr>
<td>1.29</td>
<td>8</td>
<td>31</td>
</tr>
</tbody>
</table>

- Modes with relative energy less than 10% are not shown.
- 128 Relative bus frequency signals used.
- HTLS, ERA, Matrix Pencil and Prony agree for the main 0.42 Hz mode.
- 8 second Analysis window.
Mode Shape of the 0.42 Hz Mode

0.42 Hz mode at around 12% damping ratio
Simulated WECC Case 1 Frequencies wrt Malin

Alberta

BC Hydro

Mexico CFE
Prony Mode Shape of 0.37 Hz Mode

0.37 Hz mode at around 9% damping ratio
November 27 2016 Bus Frequency Time Plots

Alabama

Out of phase

New Jersey
0.7 Hz Oscillation Mode Shape

New Jersey

Alabama

TN

AR

Alabama (source)
FFDD Power Spectrum@12:10AM (Before)

Main modes
0.25 Hz
0.4 Hz
0.5 Hz
0.75 Hz

Forced Oscillation Interacting with System Mode
System Modes
FSSI Estimates Before GA Osc Event

- **0.78 Hz Mode** (Damping Ratio around 7%)
- **0.67 Hz Mode** (Damping Ratio around 6%)
- **0.75 Hz Osc**
0.67 Hz System Mode Shape from FSSI
0.78 Hz System Mode Shape from FSSI
Power Spectrum @ 3:15 AM (During)

Forced Oscillation Interacting with System Modes

Main mode 0.75 Hz
FSSI Estimates During GA Osc Event

Frequency vs Damping Ratio - 11/27/2016 12:39:30 AM to 12:46:00 AM

- 0.75 Hz Osc
- 0.78 Hz System Mode
- 0.67 Hz System Mode
- 0.7 Hz Osc

Damping Ratio / %
0.69 Hz System Mode Shape from FSSI
0.7 Hz Oscillation Mode Shape from FSSI
Resonance Conditions for 0.7 Hz

Georgia Oscillation

- 0.7 Hz Oscillation versus 0.67 Hz System Mode
- 0.67 Hz Well-damped (6% Damping Ratio)
- Forced Osc location near the two distant ends (strong participation) of the System Mode (not true)
- GA Location 22% Relative Energy for the Mode
- Interaction with 0.78 Hz mode?

Only 1+ conditions valid: Resonance effect small.
Special Reliability Assessment Summary

- Many inter-area modes in North American interconnections
- Mode shapes appear to be consistent in general across different events
- Damping levels have been from 6% to 10+%
- Many forced oscillations are present that are exciting inter-area modes
- Mode shapes comparison between model based simulation and system PMU capture very useful.
- Report full draft by end May 2018