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• Transient instability is a fast phenomenon and a generator
or group of generators potentially lose the synchronism
within a few seconds after a severe disturbance.

• Fast recognition of such instabilities provides opportunity
to initiate appropriate emergency control actions.

• In literature, it is common practice to provide controls
referred as special protection systems (SPSs), which are
rather complicated and expensive.

• Response based wide area protection and control systems
are the best option as they are more simple, effective and
can be implemented using wide area synchrophasor
measurements of a network.
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Developing a response based novel technique to

predict and control impending transient

instability conditions following a severe

disturbance using wide area synchrophasors.

Objective
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Overall Structure of the Proposed Method 
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• This algorithm classifies the transient swings as stable or
unstable, based on rate of change of voltage (ROCOV) vs.
voltage deviation (ΔV) characteristics of the post-
disturbance voltage magnitudes.

• Implementation involves three-steps:

Transient Stability Status Prediction Algorithm

Stability boundary on ROCOV-ΔV plane 

Stability boundary

Voltage deviation, ΔV (pu)

R
O

C
O

V 
(p

u/
s)

(0,0)

B (x1,y1)

C (x2,y2)

Stable 
region

Unstable region

A

D

Marginally 
stable trajectory

1. Identification of contingencies
that makes generator
marginally unstable through
off-line dynamic simulations.

2. Determination of stability
boundary for each generator.

3. Detection of severe
disturbances and triggering
the transient stability status
prediction algorithm.
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• The mitigation scheme identifies coherent groups of
generators from post-disturbance voltage magnitudes.

• The generators which is becoming unstable first is tripped
together with all other generators in the same coherent
group.

• A priority based load shedding scheme is activated to trip
loads to retain generation-load equilibrium.

• Frequencies at the generator terminals are monitored and
the generators violating under/over frequency limits are
tripped.

Transient Instability Mitigation Scheme
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Laboratory-Scale Hardware Setup
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Simulation Results : IEEE 39-Bus Test System
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Variations of rotor angle and voltage magnitude
Fault on line 16-17 (95% of the length) cleared by removing the line after 6 cycles

Real Time Simulation Results
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Real Time Simulation Results

Variations of ROCOV vs. voltage deviation
Fault on line 16-17 (95% of the length) cleared by removing the line after 6 cycles
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• Based on the results of numerous experiments, it can be
concluded that using the post-disturbance trajectories of
generator terminal buses on ROCOV-∆V plane, stability
status of the system can be determined.

• The proposed prediction algorithm pinpoints the unstable
generator, which is very important in determining
emergency control actions.

• A generator tripping and load shedding scheme
implemented in the RTDS and a laboratory scale
communication network demonstrated the effectiveness
of the proposed approach.

Conclusion

Real Time Simulation Results
Conclusion Conclusion
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