Online Oscillation Management at ISO New England

SLAVA MASLENNIKOV XIAOCHUAN LUO FRANKIE ZHANG IZUDIN LELIC EUGENE LITVINOV

PMU Infrastructure at ISO New England

PJM

MISC

- Installed in 2012
- 86 PMUs at 45 locations
- Full observability of 345 kV with some redundancy
- Seven open PDCs at TOs and one at ISO
- Selected PMU data from NYISO, PJM and MISO; added in 2017

Oscillation Monitoring

- PhasorPoint application automatically processes PMU data 24/7 and does the following
 - ✓ Detects and characterizes oscillations
 - ✓ Generates Alarms/Alerts per pre-defined magnitude/damping thresholds
- Multiple instances of poorly damped oscillations with high MW magnitude and frequency from 0.03 Hz to 2 Hz have been detected since 2012
- Almost all oscillation Alarms are caused by Forced Oscillations (FO)

Examples of FO:

ISO was unaware of FO before the installation of PMU

Do Oscillations Impose Any Threat?

- Yes, the sustained oscillations can cause
 - ✓ Potential uncontrolled cascading outages
 - ✓ Undesirable mechanical vibrations in system components, which increases the probability of equipment failure, reduces the lifespan of equipment, and results in increased maintenance requirements
- Catastrophic event of rotor's vibration at Sayano–Shushenskaya hydro power station in 2009*

Before the accident

After the accident

* https://en.wikipedia.org/wiki/2009_Sayano%E2%80%93Shushenskaya_power_station_accident

Online Oscillation Management

Objectives:

- **Detect** all significant oscillatory events and provide Alarms/Alerts for dangerous oscillations
- Estimate the Source of oscillations for every oscillatory Alarm and deliver results to the designated personnel

How to Mitigate Forced Oscillations?

- Forced Oscillations exist as long as the Source of forced signal exist
 - ✓ Equipment or control system failure
 - ✓ Wrong settings of control systems
 - ✓ Unplanned operating conditions
 - ✓ Unintended interaction of control systems
- The mitigation approach is to find the Source and:
 - ✓ Disconnect it from the network
 - ✓ Reduce MW output
 - Communicate to the power plan to find out what is going on and to develop remedial actions
 - ✓ If the Source is outside of the control area, then communicate to the Operator in the suspected area

A number of mitigation measures can be applied depending on situation

- The key step in the mitigating of sustained oscillations is to find the Source of oscillations
- Source of FO is a generator in practically all observed actual events

What Does it Mean "Find the Source"?

"Find the Source" means to answer the above questions and provide the actionable information to the Operator

Magnitude is an Unreliable Indicator of the Source

- November 29, 2005 : 200 MW oscillations on California-Oregon Interface (COI) were caused by 20 MW oscillations at the Nova Joffre generating plant in Alberta, Canada, 1100 miles away due to malfunctioning steam extractor control valve
 - ✓ Resonance conditions for 0.27 Hz interarea mode

(Source: BPA)

Methods for "Finding the Source"

- Variety of methods have been proposed. They are based on different properties of the oscillations:
 - ✓ Magnitude
 - ✓ Phase angle of the mode shape
 - ✓ Propagation speed
 - ✓ Statistical signature
 - ✓ Damping torque
 - Energy-based method

Dissipating Energy Flow (DEF) method* = Energy-based method + PMU processing

- Pros: Universally efficient in a variety of practical situations
 - Works in resonance conditions
- Cons: Constant resistance load and resistance in network can impact *DE* values. Nevertheless, tracing DE values of only generators allows detecting generator- source

[*] Slava Maslennikov, Bin Wang, Eugene Litvinov "Dissipating Energy Flow Method for Locating the Source of Sustained Oscillations", International Journal of Electrical Power and Energy Systems, Issue 88, 2017, pp.55-62

The DEF Method

• The rate of change of dissipating energy (*DEi*) for any branch *ij* monitored by PMU at bus *i*.

$$W_{ij}^{D} = \int (\Delta P_{ij} \cdot d\Delta \theta_{i} + \Delta Q_{ij} \cdot d(\Delta \ln V_{i}))$$
$$= \int (2\pi \cdot \Delta P_{ij} \cdot \Delta f_{i} \cdot dt + \Delta Q_{ij} \cdot d(\Delta \ln V_{i})) \Box DE_{i} \cdot t + b_{ij},$$

- *DE* coefficient can be viewed as a regular MW flow in terms of Source-Sink for a flow of the transient energy
- The Direction and the value of *DE* in multiple branches allow tracing the source of oscillations

10

PMU Processing for all PMU signals

- Need to calculate "the deviation from steady-state value" for a specific mode
- Steady-state practically does not exist in actual systems

The DEF Method Test Results

• Simulated cases*: test case library of sustained oscillations – a set of representative cases which can be expected in actual systems

Description	Test Results
All 9 cases of poorly damped natural oscillations	Pass 🗸
All 14 cases of forced oscillations	Pass

• Actual events in ISO New England and WECC

Description	Test Results
More than 30 cases from ISO-NE	Pass 🗸
Two cases from WECC	Pass 🗸

The DEF method was implemented in the Oscillation Source Locating (OSL) application

12

<u>* http://curent.utk.edu/research/test-cases/</u>

Features of online OSL application

- Automatic selection of the study period
- Filtering out false Alarms caused by
 - ✓ Bad PMU data
 - ✓ Tripping events
- Dissipating Energy (DE) flow pattern recognition
 - DE flow in the network is converted into a text message on a specific Area/Substation/Generator which is the suspect source of oscillations
- Visualization of DE flow on oneline diagram
 - ✓ Efficient way to deliver OSL results for limited system's observability by PMU when DE pattern recognition is difficult

13

Identification of False Alarms

- PhasorPoint can generate false alarms caused by bad PMU data or by tripping events. False Alarms are identified by the OSL.
- Example: "Stalled" current's angle measurement at not-nominal frequency results in oscillatory shape of calculated MW

Visualization of DE flow

- Automatically generated online diagram with DE flow
 - ✓ JPEG file is created by PowerWorld Simulator and SimAuto
- High resolution picture with capability to zoom in

Example of Alarm Notification by Email

MW flow in line causing Alarm

16

FO Originated Outside ISO-NE (1200 miles away)

June 17,2016; interarea oscillations of 0.22-0.28Hz, up to RMS=11MW caused multiple alarms in ISO-NE during 45 minutes

Time domain data

FO Originated From the Excitation Failure

June 15, 2016; oscillations of 1.32Hz were caused by the failure of the excitation system of G₃ - one of three units operating at the same conditions. All units were monitored by PMU.

Unexpected FO During a Standard Test

• July 20, 2017; unexpected oscillations of 1.13Hz as the result of a standard test at a power plant. This power plant is not monitored by PMU.

Conclusions

- Online oscillation management provides the following
 - ✓ Detects and characterizes oscillations
 - ✓ Estimates the suspect-source
 - ✓ Sends notifications to designated personnel
- The OSL applications provides actionable information to Operations
 - Identification on whether the source is located inside or outside of control area
 - ✓ Identification of a suspect substation
 - ✓ Identification of a suspect **specific generator** within power plant

20

• The prototype online OSL application has been deployed in September 2017

Questions

21