Operationalizing Synchrophasor Technology at PG&E

NASPI Workgroup Meeting
September 26th 2017
Sherman Chen, Senior Manager, Operations Systems, Electric Grid Operations, PG&E
Dan Brancaccio, SME, BRIDGE Energy Group
PG&E

• There are approximately 20,000 employees who carry out Pacific Gas and Electric Company's primary business.

• The company provides natural gas and electric service to approximately 16 million people throughout a 70,000-square-mile service area in northern and central California.

• Service area stretches from Eureka in the north to Bakersfield in the south, and from the Pacific Ocean in the west to the Sierra Nevada in the east.

• 106,681 circuit miles of electric distribution lines and 18,466 circuit miles of interconnected transmission lines.

• 5.4 million electric customer accounts.

• 7,681 MW generation capacity (hydro, nuclear, fossil, and solar).
PG&E Synchrophasor Program History

- **PG&E Project Development and Proof-of-Concept (POC)**
 - PG&E will participate in WECC wide project meetings and conference calls to coordinate its Synchrophasor project with other WISP participants to leverage areas of expertise and mutual collaborations.
 - PG&E will perform a proof-of-concept to validate interoperability, compatibility, and data integrity of various vendors’ equipment that PG&E intends to use. Real-time Digital Simulators (RTDS) and test equipment will allow PG&E to test various operator and engineering tools.
 - PG&E will perform comprehensive system studies to determine the locations for PMUs, the phasor data concentrators and super phasor data concentrators based on a series of criteria including availability of PG&E’s network.

- **PMU and PDC Deployment**
 - PG&E will design, procure, install and test phasor measurement units and phasor data concentrators at existing electric transmission substations within their service territory.
 - PG&E will use a combination of existing equipment and new equipment.
 - PG&E will upgrade its existing telecom infrastructure to handle the added traffic of transmitting phasor data from substations to its control centers.

- **Data Storage and User Applications**
 - PG&E will store phasor data for both real time (or near real time) operational use and for operational basis, training, system planning, engineering and post disturbance analyses.
 - Storage capacity will be installed at PG&E control centers.
 - PG&E’s existing energy management system will be enhanced to include phasor data into the state estimator and situational awareness systems.
 - PG&E will develop new engineering tools taking advantage of the new phasor data.
 - PG&E synchrophasor system shall be designed to allow applications and functions to be added in the future.

- **Data Sharing**
 - PG&E will collaborate with its neighboring utilities, the CAISO and WECC to gather any additional phasor data to support the operation of the PG&E transmission system. Specifically, the project includes integration of the synchrophasor data from neighboring systems such as BPA, SDG&E, SCE, APS and IPC to engineer solutions for grid monitoring and training tools for PG&E’s system operation and engineering. The footprint for PG&E’s project covers the Pacific AC and DC systems surrounding PG&E and includes monitoring of critical 60kV, 115kV, 230kV, 345kV, and 500kV systems.
 - PG&E will provide an interface for WECC to make use of the phasor data. PG&E is assisting WECC in evaluating alternative solutions that would support data format provided by PG&E. However, WECC is responsible for any data format conversions if data conversion becomes necessary.
PG&E Synchrophasor Program History
PG&E Synchrophasor Deployment Today

- **Transmission**
 - PMUs in 21 substations
 - 202 PMUs, 101 redundant measurement locations
 - 24 Substation PDCs, 12 redundant locations
 - 4 control center PDCs, 2 redundant locations
 - 4 redundant Archives
 - openHistorian, PhasorPoint archive – Hitachi Direct Connect SAN 60 TB (2) 120 TB (2)

- **Generation**
 - 3 PMUs, one each generator at combined cycle plant
 - 1 PDC
 - Archive OSIsoft PI, openHistorian, SEL SynchroWAVE
 - Visualization, SEL SynchroWAVE, open source Grafana

- **Transmission Operations Synchrophasor Test Lab (TOSTL)**
Architecture Transmission
Transmission PMUs and PDCs
Data Availability effort

• Simplify data path
 • Identify all data paths
 • Move point to point paths inside control center where possible using GPA Synchrophasor Stream Splitter

• Switch protocol
 • Switch from IEC 61850-90-5 to IEEE C37.118-2005 Substation PDC to Control Center
 • Switch from UDP Multicast to TCP/IP Unicast

• Review naming convention
 • Internal naming convention consistent and usable
 • Comply with WISP naming convention for sharing data with Peak RC and other entities

• Deploy data availability measurement tools

• Regular interaction with network communication group

• Attend Monthly Peak RC SPDQ meeting
Understand how your architecture effects your availability statistics

The PDC “hides” data availability problems
Availability issues at location 1 appear as data errors at location 2
Availability issues at location 2 are unchanged at location 3 but appear as data errors at location 4
Availability issues at location 2 cause all the PMUs reporting to PDC A to have the same availability issues as seen by PDC B or the PDQTracker
Data Availability 98.21% what does it mean?

• 60 Hz sample rate delivers 5,184,000 samples per day
• An availability of 98.21% means 92,793 samples did not get delivered
• To address the dropped data frames you need to know how they are distributed
Discrete time slices
Spread out over entire day (4407 data errors)
Data to Peak RC

Improvements
Availability Today

W080TBLMTN

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

W080TESLA

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

W080VACADX

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

W080BELOTA

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>100.00 100.00 100.00 100.00</td>
<td>0.00 0.00 0.00 0.00</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

W080GATES

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.90 0.00 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.90 0.00 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.90 0.00 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.90 0.00 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

W080GREGG

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.91 0.01 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.91 0.01 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.91 0.01 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.91 0.01 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

W080HELMPG

<table>
<thead>
<tr>
<th></th>
<th>Availability %</th>
<th>Data Errors %</th>
<th>Time Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.92 0.02 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>02</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.92 0.02 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>03</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.92 0.02 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>04</td>
<td>99.10 99.10 100.00 99.10</td>
<td>0.90 0.92 0.02 0.90</td>
<td>0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

Previously only 2 PMUs were being sent to Peak RC with availability around 60% and a latency of almost 20 seconds.
Generator Model Validation

Colusa Combined Cycle Plant
Architecture Generation
RAS Event 4-6-2017 (Colusa P, Q, V, and F)
RAS Event 6-23-2017 (Colusa P, Q, V, and F)
MathWorks Simulink Modeling and Parameter Estimation Tool
MathWorks Generator Model
6-23-2017 RAS Event: CTG-1 Original Parameters vs PQVF Optimized Parameters
BPA PDCI Modulation Test 6-6-2017
Ringdown: Malin – Round Mountain #1 500 kV Line
Ringdown: Los Banos – Midway #2 500 kV Line
PhasorAnalytics: Frequency Response
Contacts:

• Sherman Chen, PG&E
 • SWC1@pge.com

• Dan Brancaccio, SME, BRIDGE Energy Group
 • Dbrancaccio@BridgeEnergyGroup.com