Summary of EPRI Synchrophasor Related Activities

Evangelos Farantatos
Paul Myrda
Mahendra Patel

NASPI WG Meeting
Springfield, MA
September 26, 2017
Synchrophasor Data System & Applications

1. Streaming Data Infrastructure and Data Management
2. Data Quality Monitoring and Mitigation of Streaming Synchrophasor Measurements
3. PMU Emulator
4. Synchrophasor-Based Wide Area Oscillations Damping Controller
5. Voltage Sensitive Static ZIP Load Model Using Synchrophasor Data
1. Streaming Data Infrastructure and Data Management

- The program benefit is to provide operators and asset managers more time to mitigate the abnormal conditions leading to improved reliability.
 - Improve transport and management of streaming data
 - Increase knowledge of storage, usage, and archiving issues.

- Investigating Data Transfer issues
 - Coordinating with NASPnet 2.0 review
 - Supporting Grid Protection Alliance on STTP project with DOE
 - Purpose built protocol designed to transfer PMU data especially from control center
 - ASP will be purpose built for high-volume streaming data with rich data types and detailed associated metadata
2. Data Quality Monitoring and Mitigation of Streaming Synchrophasor Measurements

- **Goal:** Improve synchrophasor data quality by estimating missing data and replacing bad data in synchrophasor streams
- **Model free technique, no need for topology information or system parameters**
- **Computationally efficient for real-time implementation**
- **Performs well for simultaneous & consecutive missing data conditions**
Streaming Synchrophasor Data Quality (SSDQ) Software

Offline Application

- Algorithms are being tested with recorded synchrophasor data provided by EPRI members
- Next: Demos with streaming synchrophasor data hosted by utilities/ISOs
- Next: Collaboration with vendors for implementation in commercial platforms

Real-Time Application

- OpenPDC Server to simulate ISO PDC
- IEEE C37.118 stream
- SSDQ Algorithms in OpenPDC

- Algorithms are being tested with recorded synchrophasor data provided by EPRI members
- Next: Demos with streaming synchrophasor data hosted by utilities/ISOs
- Next: Collaboration with vendors for implementation in commercial platforms
3. PMU Emulator

- Phasor values obtained from dynamic simulation tools may differ from synchrophasors measured by PMUs in the field.

- How a PMU works:
 - Analog signal sampling - A/D Conversion
 - Digital filtering → magnitude attenuation & phase offset
 - Phasor estimation
 - algorithm e.g. DFT
 - window length - P & M class PMUs

- PMU Emulator: interfaced with power system dynamics simulators, and produces “simulated synchrophasors” taking into account PMUs internal signal processing.
PMU Emulator

M-Class - 15 cycles window

- **Proof-of-concept software**

- **Hardware-In-the-Loop benchmarking (RTDS & hardware PMUs)**
- Use cases: Model validation, synchrophasor applications offline testing (especially control applications), operator training, etc
- Vendor PMU library – NASPI may facilitate?
- Next: Collaboration with vendors for implementation in commercial platforms
4. Synchrophasor-Based Wide Area Oscillations Damping Controller

- Improved Damping of Target Inter-area/Intra-area Oscillations Mode
- Application of Synchrophasor Technology in Closed Loop Wide Area Control

![Diagram of WADC and PMU with graph comparing control effectiveness]
Wide Area Oscillations Damping Controller

- WADC via additional input to generator excitation system or FACTS/HVDC controller
- Adaptive controller
 - Measurement-derived transfer function model
- Ongoing case studies with NYPA and Terna
- Hardware-In-the-Loop implementation
 - Measurement delays
 - Missing/Bad data

CURENT/UTK Hardware Testbed

PSS/E User Defined Model
5. Voltage Sensitive Static ZIP Load Model Using Synchrophasor Data

- Develop Analytical Tools to Determine Voltage Sensitivity of Local Loads
 - Use Synchrophasor data for Bus voltage & Load at the critical bus
 - Filter out random noise & bad data
 - Determine appropriate Measurement Window required

- Represent Voltage Sensitivity of Load as a ZIP Load Model
 \[
 P_{ZIP} = P_0 \left[A \left(\frac{V}{V_0} \right)^2 + B \left(\frac{V}{V_0} \right) + C \right] \\
 Q_{ZIP} = Q_0 \left[D \left(\frac{V}{V_0} \right)^2 + E \left(\frac{V}{V_0} \right) + F \right]
 \]
Together...Shaping the Future of Electricity