

Grid Software Solutions

Built -- in Data Quality

Manu Parashar, Ph.D. NASPI Workgroup Meeting, Atlanta GA March 2016

Imagination at work.

Data Quality in WAMS

- Addressing data accuracy and data availability issues requires evaluating the end-to-end system.
- Need to look at each component dataflow chain:
 - Detect data quality issues close to its source.
 - Preserve & communicate this information to downstream applications.

PMUs: Data Quality Status flags in C37.118 stream (GPS Lock, Data Error)

PDCs: Monitor and track latency, dropped communications, etc.

Historians: Preserve data integrity when archiving data.

Applications: Data quality needs and tolerance is application dependent.

INTERNATIONS

PDC Processing

PDC Processing

- Preserve the integrity of the incoming data stream.
- Support a redundant architecture.
 - Duplicate Data:

For example, data sent through redundant communication paths.

- Redundant Data: Data sent by alternate devices.
- PDC selects data either based on first-arrived or validity
- Monitor incoming data quality statistics (live & historical)

WAMS System Architecture at PG&E

Architecture Supports both Redundant and Duplicate Data

Courtesy: Vahid Madani, PG&E

e-terraphasorpoint PDC

Statistics and Monitoring Details

- Live **Stream** Statistics
 - o Mean/Max/Min frame latency
 - Percentage Time Quality errors (C37.118 MSG_TQ)
 - o Percentage Missing data frames
 - o Last Valid data frame

Input Stream Statistics												
Search:												
Stream ID 📲	Status	Max Latency ا 🏌	Min Latency ا	Avg Latency 👫	% Time Quality Errors	Last Valid Data Frame	Missed Frames 🕼					
60	\bigcirc	4215.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
61	\bigcirc	4215.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
62	\bigcirc	4226.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
63	0	4215.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
64	0	4215.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
65	0	4215.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
66	0	4215.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
67	0	4226.0	4117.0	4163.0	0.0	Tue Feb 16 13:59:59 PST 2016	0.0					
2000	0	81.0	11.0	12.0	0.0	Tue Feb 16 14:00:03 PST 2016	0.0					
2001	0	401.0	17.0	187.0	0.0	Tue Feb 16 14:00:03 PST 2016	19.833334					

e-terraphasorpoint PDC Statistics and Monitoring Details

- Live **PMU** Statistics (1 minute rolling data)
 - Percentage of GPS Lock
 - Percentage of Valid data
 - Percentage of Data Error
 - o Percentage of Missing data

PMU ID 🛛 🚛	Status	Station Name	% GPS Lock	% Data Valid 🛛 👫	% Data Error	% Missing Data	Stream ID 🛛 🗍
60	0	Pmu1	100.0	100.0	0.0	0.0	60
61	0	Pmu2	100.0	100.0	100.0	0.0	60
62	\bigcirc	Pmu3	100.0	67.889	0.0	0.0	60
63	\bigcirc	Pmu4	100.0	67.889	32.111	0.0	60
64	0	Pmu5	68.444	100.0	0.0	0.0	60
65	0	Pmu6	100.0	100.0	0.0	0.0	60
66		Pmu7	100.0	100.0	0.0	0.0	60
67		Pmu8	100.0	100.0	0.0	0.0	60
2000	0	UFC	100.0	100.0	0.0	0.0	2000
2001	0	UFMG	100.0	80.083	0.0	19.917	2001

Applications

Application Level Data Handling

- Some common data conditioning based on heuristics:
- Utilize PMU data quality status info from the field.
- Reasonability Range Checks e.g.
 - Voltage less than 30% of nominal (user-configurable).
 - Frequency deviation more than 30 Hz.
- Derived values (such as freq, MW, MVAR) are flagged accordingly, e.g.
 - Invalid voltage phasor implies derived frequency is suspect.

Note: Invalid data is (1) flagged as suspect in operator UIs, (2) handled as applicable to downstream applications.

SPECIFIC.

Example: Reference Angle

Reference Handling in Operator Displays

- Operators are used to having the reference angle as 0 degrees.
- Need to ensure the reference is always available

⇒ Ref. Priority List

Angle Reference Processing

Event Detection

Impact of Reference Selection on Analytical Results

Oscillation Monitoring Impact of Reference Selection on Analytical Results

CORREC⁻

WRONG

BUILT IN DATA HANDLING: SOME APPLICATION EXAMPLES

Data Handling in Oscillation Monitoring

• Data Gap Tolerance:

- Expect at least 90-95% data availability over the processing window before the signal is not used.
- PMUs with different dynamic characteristics will impact OSM results (especially mode amplitudes) - NO LONGER AN ISSUE.
 - ⇒ **SOLUTION:** Pre-process signals to compensate for this difference.
- Signal Loss Robustness:
 - Processes multiple signals
 simultaneously.
 - Algorithm can function in the absence of signals.

Data Handling for Hybrid State Estimation

Pre-Processing: Down-sample PMU data to 1 sample/second (i.e. SCADA scan rates).

Focus is on **data completeness** than **precise time alignment** with SCADA data.

Several different down-sampling approaches supported by PDC:

- Pick the most complete data frame within the second.
- Data **averaged** within the second.
- Low-pass filtering using moving time window.

Addressing Data Accuracy

Linear State Estimation

- Validate data accuracy (bad data detection and correction).
- Capable of running at sub-second rate.
- Catch CT/PT errors OR Angle Offset errors.

OPERATE IN REAL TIME AND STUDY MODES

Example: Phase Angle Offset Detection & Correction.

THANK YOU

