SYNCHROPHASOR DATA QUALITY -DOE SPONSORED STUDY

North American Synchrophasor Initiative Atlanta, GA

March 21, 2016

Ken Martin

What is Data Quality?

- Means different things to different people
- Generally can be defined:

Data Quality is any aspect of data that bears on its ability to satisfy a given purpose*

- Quality requirements depend on the application
- Challenging when used by multiple applications

* from Wikipedia

Addressing Data Quality

- How should data quality be approached?
- Build a system that will produce good data
 - Planning and design
 - Validate installation
- Take measures to assure we are using good data
 - Validate data
 - Correct/improve data where possible
- Ongoing monitoring

Introduction

- Data Validation and Conditioning Project
 - Sponsored by US Department of Energy
 - Started in December 2012 and completed December 2014
- Principal objective:

Develop, test and prototype various methods for conditioning and validating real-time synchrophasor data

- Three phases
 - Phase 1 survey, study, & prototype development
 - Phase 2 prototype demonstration
 - Phase 3 prototype functional specifications

Best Practices Development

EPG approach:

- Study systems based on current experience & practice
- Focus on modeless error detection algorithms

Initial Activity – Industry survey:

- Survey companies with SGIG projects and other companies with significant synchrophasor initiatives
- Review literature-sources NASPI, IEEE, etc.

Best practice recommendation document:

- From survey results
- EPG experience with synchrophasor systems

Best practices report

- Major chapters:
 - Administration
 - Planning
 - Operation
 - Maintenance
- Supplemental:
 - Appendix A: detailed description of installation validation procedures
 - Appendix B: troubleshooting guideline and procedures

Project administration

- Multi-disciplinary coordination
 - Component operation tightly coupled across disciplines
 - Set policy, resolve issues
 - Coordinate all areas of system management
- Documentation & change management
 - Configuration management
 - Standard company documentation but add system aspects
 - Troubleshooting guide and history
- Problem resolution support
 - Troubleshooting, recommendations for system modification

System implementation

- Application requirements drive specifications
 - PMU locations, signals measured, measurement details
 - Communication requirements
 - Application & data storage needs
- System design to meet specifications
- Equipment selection & procurement
 - Specifications & compliance
 - System operation testing (mockups)
 - Calibration
- Coordination with other participants
 - May include other utilities

System validation

- Comparisons in the substation
 - Installed instruments (limited accuracy, good reference)
 - Portable test instruments (high accuracy, basic signals)
- Validation at TO control center
 - Comparisons with SCADA or other metering
 - Validate against other substations
 - Compare with state estimator (power flow, angles)
- Validate at RTO/ISO control center
 - Same as at TO CC, but wider scope
 - Inter-area phase angles (regional phasing)
 - Data identification

System operation

- On-line data validation
 - Checks on data flags & data cross checks
 - Live & historical performance information, alarms
- Off-line data validation
 - Look at data regularly!
 - Event analysis using measurement data
 - Measurement dynamic comparisons such as with DFR
- Analyze disturbance data
 - Monitor dynamic responses

Maintenance

- Routine maintenance program
 - Use established practices (substation equipment, communication system, IS servers, etc.)
 - Analog signal sources & PMU A/D (nothing else degrades)
- Trouble maintenance
 - Tools and procedures
- Configuration and document management
- Replacement program planning

Summary

Data quality:

- Depends on the actual intended use of the data
- Can be broken down into 6 data categories: loss, corruption, accuracy, precision, identification, and delivery delays
- Issues are addressed by:
 - System planning and design
 - Installation and validation
 - Monitoring and maintenance program

