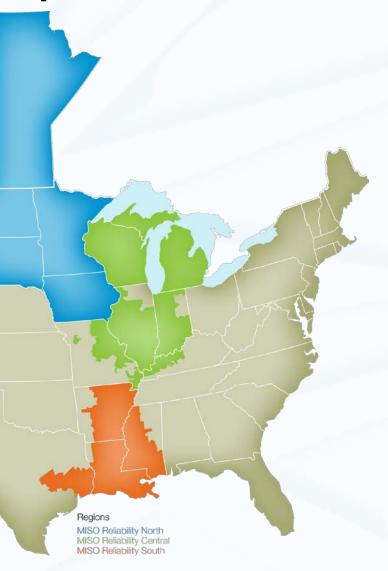


Synchrophasor Data and State Estimation

NASPI Workshop -- MISO

March 25, 2015

Outline


- MISO System Overview
- MISO State Estimation
- MISO PMU Overview
- Current Status and Ongoing Tasks with PMU Data in MISO State Estimation
- Challenges of Current MISO SE and Potential Usage of PMU Data

Current Scope of Operations

- Generation Capacity
 - 177,160 MW (market)
 - 252,809 MW (reliability)
- Historic Peak Load (July 20, 2011)
 - 126,337 MW (market)
 - 132,893 MW (reliability)
- 65,800 miles of transmission
- Footprint
 - 15 States
 - 1 Canadian Province
 - City of New Orleans

MISO Network Model Overview

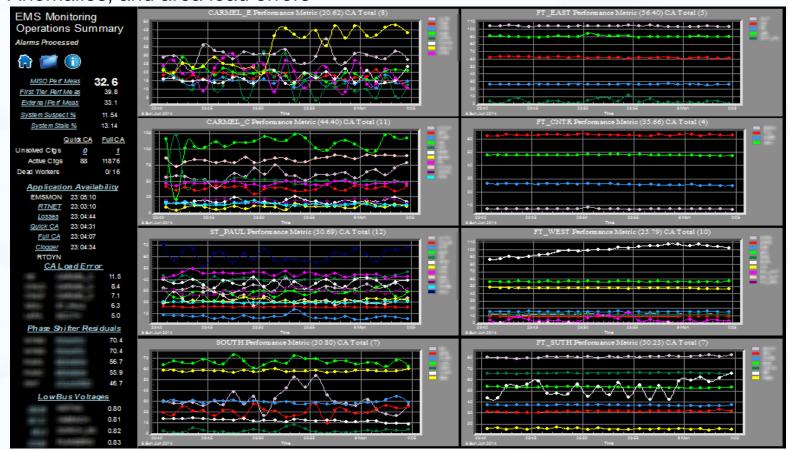
Network Model (March 2015)

- ➤ 54,433 network buses
- ➤ 54,415 network branches
- ➤ 6,332 generating units
- ≥ 29044 substations
- > 36,777 loads
- > 228673 CBs
- > 7906 CPs
- ➤ 289,491 Mapped ICCP points

Real Time Network Sequence Control Room Operators Engineer Monitor & Operator Constraint Operator Adding Monitor debug violations constraints Selection User Interface Quick CA Full CA Displays Displays Displays Real Time Network Sequence **Full CA State Estimator** Losses (RTCA.EMS2) Valid SE **Quick CA** (RTCA.EMS) **CLOGGER EMSOUT** Market Interface Constraints **SE Out File**

UDS-

-UDS----


State Estimator

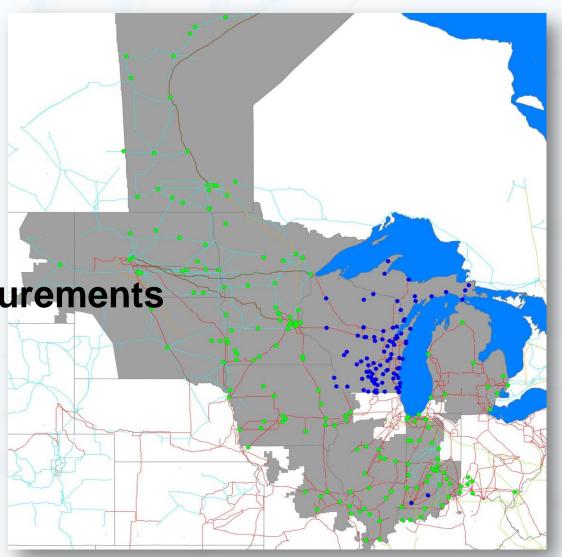
- Base platform is Alstom EMP 2.6: Customized to handle the model size, performance, and to provide inputs to market related applications
- Real Time Network Analysis (RTNET) includes SE and Loss Sensitivity Calculations (Losses)
- SE, Losses run in sequence
- EMSOUT, RTCA (QuickCA) are triggered after valid SE. SE continues to run while RTCA is running
- RTNET is triggered every 60 seconds, SE solves in about 17 sec, and Losses takes about 7 sec, QuickCA takes about 28 sec.
- FullCA is triggered every 4 minutes and takes about 3 minutes to process 12000 contingencies.

State Estimator Performance Monitoring

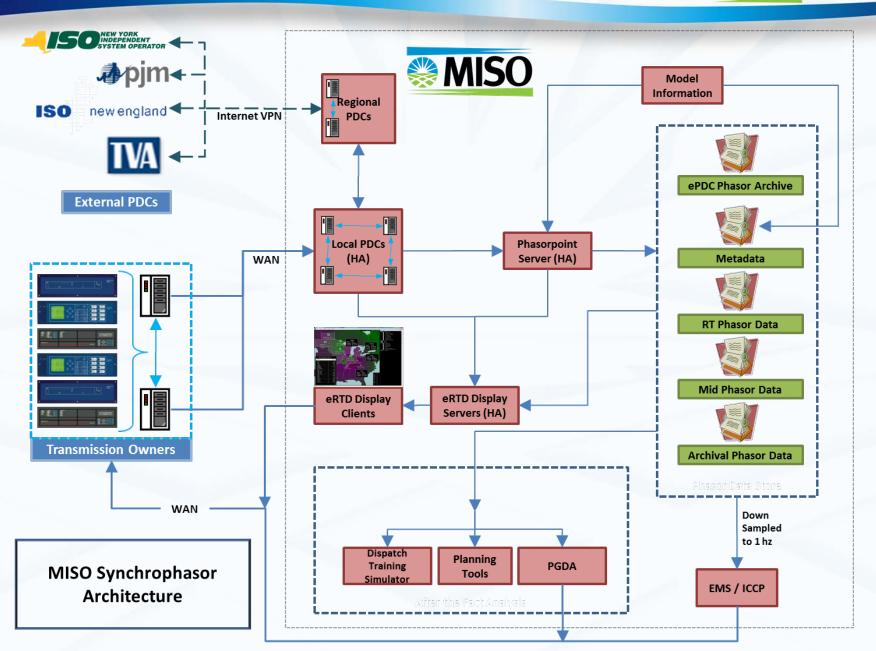
- Over all SE solution quality is rolled into a single performance index with capability to zoom in by control area and by type of the problem
- Performance index is a weighted average of line residuals, bus mismatches, MW Anomalies, and area load errors

MISO PMU Coverage

• 379 PMUs


- 260 Grant
- 119 Non-MISO Grant

288 locations


- 180 Grant
- 108 Non-MISO Grant

2,225 PMU measurements

- 583 PMW/PMR pairs
- 522 KV/Angle pairs
- 5 AMP/Angle pairs
- 5 Hz

Current Status and Under-going Tasks with PMU Data in MISO State Estimator

Current Status

- All the MISO PMU are currently transferred from PDC to SCADA with 1 sec sampling through ISD link
- The differences between PMU bus angle measurement and SE angle solution are monitored as part of the SE performance monitoring tool

Ongoing Tasks

- Feed PMU data into the Parallel State Estimator to test and tune SE solutions
- Evaluate the effect of PMU data on State Estimator. Decide to use PMU as Primary or Backup measurements of SE

Challenges of Current MISO SE and Potential Usage of PMU Data

Challenges

- Huge model size. SE solution issue in one local area will affect the entire system
- Incorrect or inaccurate network parameters (Line or transformer R, X and B)

Potentials

- Hierarchical or Distributed SE. Use PMU data around the boundary of the sub-systems (sub-areas) to prevent the corruption of the SE solution from one area to other area(s), easy to split the sub-areas
- Parameter Estimation with PMU measurements.
- Linear State Estimation.

