Synchrophasor Application Studies using Real-Time Simulators
Overview

• Company Backgrounds

• Collaboration between OPAL-RT and VIZIMAX
 o PMU Test Setup
 o Tests Applied to the VIZIMAX PMU

• Comparison of Test Results for Different PMU Algorithms

• Advanced Applications using Model-Based Design, Studies and Testing
 o The Mont-Rothery Wind Farm in Canada
 o Protection Applications using PMUs
 o Control Design and Prototyping using Virtualized PMUs

• Conclusions
Company Backgrounds
• Some Facts
 • Established in 1997 – Corporate office in Montreal
 • Over 140+ Employees worldwide
 • More than 500 customers worldwide
 • Real-time simulators available for power systems, power electronics, automotive and aerospace industries
 • Power grid simulators scalable from 10 to 10,000 electrical nodes or more

• Corporate Mission
 • To provide solutions and expert services for design research, studies and testing in the fields of electrical and power electronics systems
 • To provide Engineers with open simulators that use the latest COTS computer technology

• Long-Term Vision
 • A real-time simulator on each engineer’s or researcher’s desk
 • Simulators interconnected and working for designing and studying large and multi-disciplinary systems.
 • Imagination will be the only real limit to complex system design.
• The Company
 • Established in 2008 from a merger between Snemo (1977) and STR (1988)
 • Provides innovative solutions for energy applications – Power Grids, Power Generation, HV/MV Equipment, Heavy Industry
 • Customers in over 35 countries

• Products
 • Phasor Measurement Unit
 • Analog Merging Unit
 • SynchroTeq™: Controlled switching device (CSD)/Inrush current limiter
 • RightWON™: Substation automation controller

• Mission
 • To help optimize how Energy is Generated, Transported & Distributed
 • To protect as much as possible their customers’ assets by focusing on innovation, quality, and customer service
Collaborations with Hydro-Quebec Research Institute (IREQ)

- OPAL-RT and IREQ signed a strategic collaboration agreement for the shared commercialization and development of HYPERSIM (2012)

- Agreement for integration of estimation algorithms resulting from research at IREQ. Algorithms have been enhanced by VIZIMAX for accurate real-time estimation and standard compliance.

- Other collaborations for validation of automation and control equipment and certification for use on the Hydro-Quebec grid.
• Automated testing of PMUs based on C37.118.1
 • Study requirements of the IEEE std
 • Program test sequence using OPAL-RT Hardware and TestView software
 • Calibration of the test equipment
 • Help validating the VIZIMAX PMU using automated test-set – faster and larger test coverage

• Develop a PMU - foreseeing IEEE-ICAP certification
 • Develop their own test bench using an OMICRON CMC-256plus universal calibrator
 • Provide a low-voltage input version of their PMU to OPAL-RT
 • Help validating the performance of OPAL-RT test equipment on specific tests
PMU Test Setup
Typical PMU Test Setup

- **VIZIMAX PMU**
- **V & I Amplifier**
- **OPAL-RT Simulator**
- **HYPERSIM / TestView**

Power Amplifier
- 3 x V: ±16 V peak
- 3 x I: 150 V AC, 50 A AC

Ethernet Switch
-Slave
-Master

IRIG-B
-Master Clk
-Slave

C37.118
-Master
-Slave

OPAL-RT Technologies
PMU Test Setup using Low-Voltage Interface

- **VIZIMAX PMU**
- **Ethernet Switch**
- **OPAL-RT Simulator**
- **HYPERSIM / TestView**

Specifications:
- **C37.118 Slave**
- **3 x V ± 10 V_peak**
- **3 x I**
Automating tests in HYPERSIM

- Define model parameters to be modified or applied using an EXCEL spreadsheet
 - Use model component name as defined in netlist
 - Use component parameter as defined in netlist
- Program test sequence directly in TestView...
- Or import EXCEL test sequence
Test Automation using TestView

Generate test reports

- View test waveforms in ScopeView and automate printing of .pdf report for each test
- Output post-processed values calculated during test in a pre-formatted EXCEL spreadsheet
- Analyze data in EXCEL or ScopeView
Calibration capability of the test setup

- VIZIMAX PMU
- V & I Amplifier
- OPAL-RT Simulator
- HYPERSIM / TestView
- IRIG-B
- Master CLK
- Ethernet Switch
- C37.118 Slave
- C37.118 Master
- OPAL-RT Technologies
Calibration capability of the test setup

\[V_{\text{ref}} = \delta a \cdot \{A \sin(2\pi f \cdot [t + \Delta t] + \varphi)\} \]

Basic calibration variables
Tests Applied to the Vizimax PMU
<table>
<thead>
<tr>
<th>Test</th>
<th>Influence quantity</th>
<th>P Class Criteria</th>
<th>M Class Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal freq. Range</td>
<td>Signal frequency:
±2Hz for P class
±5Hz for M class</td>
<td>TVE <1%
FE <0.005Hz
RFE <0.4Hz/s</td>
<td>TVE <1%
FE <0.005Hz
RFE <0.1Hz/s</td>
</tr>
<tr>
<td>Signal Mag. (V/I)</td>
<td>Voltage magnitude:
80% to 120% for P class
10% to 120% for M class
Current magnitude 10% to 200%</td>
<td>TVE <1%
FE <0.005Hz
RFE <0.4Hz/s</td>
<td>TVE <1%
FE <0.005Hz
RFE <0.1Hz/s</td>
</tr>
<tr>
<td>Harmonic Dist.</td>
<td>2nd to 50th harmonic:
1% for P class
10% for M class</td>
<td>TVE <1%
FE <0.005Hz
RFE <0.4Hz/s</td>
<td>TVE <1%
FE <0.025Hz</td>
</tr>
<tr>
<td>Out-of-Band Interf.</td>
<td>10Hz - f0-Fs/2 and f0+Fs/2 – 120Hz:
10% for M class only</td>
<td>No requirement</td>
<td>TVE <1.3%
FE <0.01Hz</td>
</tr>
<tr>
<td>Meas. BW Phase & Amp. Modulation</td>
<td>0.1Hz – min (Fs/10, 2) for P class
0.1Hz – min (Fs/5, 5) for M class</td>
<td>TVE <3%
FE <0.003Max Mod Freq
RFE <0.18piMax Mod Freq2</td>
<td>TVE <3%
FE <0.003Max Mod Freq
RFE <0.18piMax Mod Freq2</td>
</tr>
<tr>
<td>Freq. ramp</td>
<td>±2Hz for P class
±5Hz for M class</td>
<td>TVE <1%
FE <0.01Hz
RFE <0.4Hz/s</td>
<td>TVE <1%
FE <0.01Hz
RFE <0.2Hz/s</td>
</tr>
<tr>
<td>Phase step change Mag. Step change</td>
<td>±10°
±10% of nominal magnitude</td>
<td>Delay time 1/(4*Fs)
TVE response time 2/f0
Overshoot, undershoot 5% of step
FE response time 4.5/f0
RFE response time 6/f0</td>
<td>Delay time 1/(4*Fs)
TVE response time 7/Fs
Overshoot, undershoot 10% of step
FE response time max(14/f0, 14/Fs)
RFE response time max(14/f0, 14/Fs)</td>
</tr>
<tr>
<td>Reporting latency</td>
<td>1000 consecutive reports</td>
<td>2/Fs</td>
<td>7/Fs</td>
</tr>
</tbody>
</table>
Comparison with Certification Results—Step Change Test

OPAL vs Certification Test Results (P60)

- Delay time: 0.004167s
- TVE Response Time: 0.033s
- FE Response Time: 0.075s
- RFE Response Time: 0.1s
- Overshoot: 5%

OPAL vs Certification Test Results (M10)

- Delay time: 0.025s
- TVE Response Time: 0.7s
- FE Response Time: 1.4s
- RFE Response Time: 1.4s
- Overshoot: 10%

Phase Step Test (10 degree)
Comparison with Certification Results—Dynamic Modulation Test
Comparison with Certification Results—Steady-State Test

OPAL vs Certification Test Results (P60)

- **Frequency range**
 - TVE FE RFE

- **Magnitude range**
 - TVE FE RFE

- **Harmonic distortion**
 - TVE FE RFE

- **FE (Hz)**
 - 1% 0.005Hz 0.4Hz/s
 - 1% 0.005Hz 0.4Hz/s
 - 1% 0.005Hz 0.4Hz/s

OPAL vs Certification Test Results (M10)

- **Frequency range**
 - TVE FE RFE

- **Magnitude range**
 - TVE FE RFE

- **Harmonic distortion**
 - TVE FE RFE

- **Out-of-band interference**
 - TVE FE RFE

PMU Steady-State Test

OPAL

Calibration Lab
Out-of-Band Interference Test Signal

\[X(t) = X_m \cdot \cos(2\pi f t + \varphi) + 0.1 \cdot X_m \cdot \cos(2\pi f_i t + \varphi) \]
P Class Out-of-Band Interference Test– 60Hz, 60 fps

• Interference range: 10-55Hz and 65-120Hz
• Injection level: 10%
Performance under step changes at 10 fps (P Class) VS C37.118.1 Requirements

- A series of tests \((N \text{ tests, where } n=[1,N]) \) with the step applied at varying times relative to the reporting times can be used to ‘fill in’ the response curve.

IEEE Std C37.118.1-2011:
- In general, an accurate measurement of the PMU response time, the delay time, and the overshoot percentage can be made with \(n(\text{e.g. } N) = 10 \).

IEEE Std C37.118.1a-2014:
- The time when error limits (TVE = 1%) are crossed shall be determined to an accuracy of one-tenth of the reporting rate (ten times the reporting rate?) that is being tested.
- Here, \(N=10 \) is too small to measure TVE response time at lower \(F_s \).
Comparison of Test Results for Different PMU Algorithms
Comparison of Test Results for Different Algorithms

PMU Algorithms Under Test - TVE
Comparison of Test Results for Different Algorithms

PMU Algorithms Under Test (M Class) - FE

PMU Algorithms Under Test (P Class) - FE
Comparison of Test Results for Different Algorithms

PMU Algorithms Under Test (M Class) - RFE

PMU Algorithms Under Test (P Class) - RFE
Phase Angle Step Response Test for Different Algorithms

Va Phase Angle
- Algo 1, Delay Time -0.0017s, Overshoot 1%, Undershoot 0%
- Algo 2, Delay Time 0.0018s, Overshoot 8.7%, Undershoot 6.5%
- Algo 4, Delay Time -0.0014s, Overshoot 1%, Undershoot 0.2%
- Algo 7, Delay Time 0.0037s, Overshoot 7.4%, Undershoot 0%
- Algo 8, Delay Time -0.0002s, Overshoot 4.5%, Undershoot 5.8%

TVE
- Algo 1, TVE Response Time 0.031s
- Algo 2, TVE Response Time 0.305s
- Algo 4, TVE Response Time 0.029s
- Algo 7, TVE Response Time 0.073s
- Algo 8, TVE Response Time 0.055s
- Algo 9, TVE Response Time 0.364s

FE
- Algo 1 FE Response Time 0.052s
- Algo 2 FE Response Time 0.667s
- Algo 4 FE Response Time 0.060s
- Algo 7 FE Response Time 0.203s
- Algo 8 FE Response Time 0.094s
- Algo 9 FE Response Time 0.619s
Advanced Applications using Model-Based Design, Studies and Testing
Wind farms and other Independent Power Producers (IPP) have to comply with a number of network grid requirements. This usually means installing complex and costly Static VAR Compensators (SVC) and/or mechanically switched capacitor banks and shunt reactors.
Model-based design - Mont Rothery Wind Farm in Canada

• Uses a VIZIMAX PMU to measure voltages and currents at the PCC (120 fps)

• An industrial controller receives C37.118 streams, does the calculations, corrections using PID loops and makes decisions

• The controller sends setpoints to the Wind Power Control Unit.

• The controller also controls mechanically switched capacitor banks and shunt reactors that allow meeting the requirements.

• Time to commission the system with full test coverage?
Model-Based design in Power System Engineering

- Typically, a number of studies are required in Engineering design (power plants, T&D, P&C upgrade, etc.)
- Different studies usually require different analysis and simulation tools
- For equipment design, special control and protection prototyping and testing:
 - Goes from offline studies to real-time HIL testing...
 - ... Without increasing the modeling efforts is a huge advantage
eMEGAsim is already compatible with Matlab/Simulink/SimPowerSystems

HYPERSIM will have the same graphical engine than EMTP-RV released in April 2016

Working on full compatibility with EMTP-RV models
Phenomena Simulated Using OPAL-RT Simulators
Protection Applications using PMUs
Intelligent Relay Design and Testing For Distributed Generation

- Data-mining based relay setting methodology using automated simulations
- Short tripping time and high dependability and security
- Smaller Non-Detection-Zone
- BEST PAPER AWARD – IET DPSP 2016 Conference

Supervised Training
Define training events, perform simulation and obtain feature database.

Data Mining
Based on the training database, generate Decision-tree based protection logic using Data Mining techniques.

Testing
Perform testing with unknown events, analyze the acquired intelligent relay performance.

Intelligent Relay Design and Testing For Distributed Generation

Number of tested operating conditions: 256
Test Duration: 1h56m49s

Selected key variables used for the Intelligent Relay Decision-Tree:
- V_{012}, V_{abc}
- I_{012}, I_{abc}
- Δf, df/dt, df/dP, df/dQ
- ΔV, dV/dt, dV/dP, dV/dQ
- dP/dt
- dQ/dt
- pf, dpf/dt
Control Design and Testing using Emulated or Virtualized PMUs
Virtualized PMU Dynamics with ePHASORsim

- How to simulate PMUs in Real-Time?
- How to design, study, and test a Wide-Area Control and Protection Schemes?
- How to ensure sufficient test coverage?

- Let’s look at the dynamic response of a PMU compared to ePHASORsim...
Virtualized PMU Dynamics with ePHASORsim

V_1 Magnitude - Bus22

V_1 Angle - Bus22
Virtualized PMU Dynamics with ePHASORsim

\textbf{I}_1 Magnitude - L22-23

\textbf{I}_1 Angle - Bus22
Conclusions

• PMUs are becoming a key part of ensuring grid reliability, but applications are numerous and need specialized studies and testing

• It was demonstrated that the use of a real-time simulator providing analysis capability is valuable for:

 o Pre-certification test of monitoring, control, protection devices such as PMU, with an accuracy comparable to that of calibration lab equipment and the capability to go beyond the standard requirements

 o Increasing test coverage by simulating (otherwise) « destructive tests » or contingencies with lower probability of occurrence by that have higher potential economical impact

 o Equipment and power grid design studies as well as real-time testing using the same models throughout the Engineering efforts

 o Development and study of various protection applications using IEDs with new algorithmic approaches as well as legacy functionalities

 o Design and real-time testing of Wide-Area Protection and Control schemes by emulating PMU dynamic response
Thanks!

Questions?

Jean-Nicolas Paquin, Eng., M.Eng.

jean-nicolas.paquin@opal-rt.com