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Dynamic State Estimation

» Discrete-time nonlinear system

{ X =f (1 ur—1) + q;_,
Yo =h(x,u—y) +re

» Dynamic state estimation:

given x;_; and y,, estimate x;

» For power systems:

> Xx: internal states of generators

> y comes from synchrophasors



Challenge 1: Model Uncertainty

» Power system model can be inaccurate

> unknown inputs
X =Ax + Bu + B,w + ¢(x,u)

> unavailable inputs (not measured or difficult to measure)

> parameter inaccuracy
» Are more detailed models always better?

» difficult to validate and calibrate

> higher computational burden
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Challenge 2: Cyber Attacks against PMU Measurements

» National Electric Sector Cybersecurity Organization Resource
(NESCOR) failure scenarios

> measurement data compromised due to PDC authentication compromise

> communications compromised between PMUs and control center
» Different types of attacks against measurements

> data integrity attack
> denial of service attack

> replay attack



Kalman Filters

» Extended Kalman Filter

» used for linearized model

> need to calculate Jabobian
» Unscented Kalman Filter

» used for nonlinear model
> 1o need to calculate Jabobian

> numerical stability problem
» Cubature Kalman Filter

> used for nonlinear model
> large system with high nonlinearity

> better numerical stability
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Dynamic Observers

» Real system dynamics

X =Ax +Bu+ B,w + ¢(x,u)

» Observer dynamics
X =A% +Bu+ ¢(¥,u) +L(y — h(x))

» Observer design
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'W. Zhang, H. Su, H. Wang, and Z. Han, “Full-order and reducedorder observers for one-sided lipschitz nonlinear
systems using riccati equations,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12, pp. 4968-4977, 2012.
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A Realistic Scenario for Dynamic State Estimation

» 16-machine 68-bus system
» Power system is modeled as 10th order nonlinear system

» Gaussian Process noise and measurement noise
» Model uncertainty

» unknown B,,w
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> estimator only knows steady-state values of 7, and Eg

> reduced admittance matrix is the steady-state one within 1 second after fault

» Initial guess of the states is far from the real states



Data Integrity Attack

Data integrity attack: 8 out of 64 measurements are scaled by k or 1/k

(k = 0.6)
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Data Integrity Attack (cont’d)
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Data Integrity Attack (cont’d)
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Denial of Service Attack

Norm of Relative Error

8 measurements do not update for ¢ € [3s, 6s]
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Replay Attack

Norm of Relative Error

8 measurements for ¢ € [3s, 6s] equal those ¢ € [0s, 3s]
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Conclusion

» We design a realistic scenario for DSE with significant model
uncertainty and cyber attacks

» We compare different estimation approaches

> observers are more robust to model uncertainty and cyber attacks
> observers have theoretical guarantee for convergence

> observers are easier to implement
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