Early warning signs of instability in the statistical properties of PMU data

NASPI October Working Group Meeting Seattle, October 2016

Paul Hines* Samuel Chevalier, Konstantin Turitsyn, Goodarz Ghanavati, Taras Lakoba, *To whom all blame is due

Funding gratefully acknowledged: NSF Awards ECCS-1254549, DGE-1144388, DOE Award DE-OE0000447

NY city, Nov. 9, 1965 © Bob Gomel, Life

US Northeast and Canad August 14, 2003 50 million people

California, Arizona, Mexico September 8, 2011 5 million people

Hines, 25 Jan 2013

Northern India July 30, 2012: 350 million people July 31, 2012: 700 million people

Photo: Bikas Das/AP Photo *IEEE Spectrum*, Oct. 2012

Bangledesh. 1 November 2014

Officials said it would take at least 12 hours to repair the system and restore power to the capital Dhaka [AP]

Washington DC, April 7, 2015

Situational Awareness

U.S.-Canada Power System Outage Task Force

Final Report on the August 14, 2003 Blackout in the United States and Canada:

> Causes and Recommendations

Arizona-Southern California Outages on September 8, 2011

Causes and Recommendations

$v(t) = 120\sqrt{2}\cos(2\pi60t - \pi/4)$

Inadequate Situational Awareness

The 2003 Blackout Report stated, "A principal cause of the August 14 blackout was a lack of situational awareness, which was in turn the result of inadequate reliability tools and backup capabilities."¹⁰⁹ Similarly, the instant inquiry determined that inadequate real-time situational awareness contributed to the cascading outages. In

Critical Slowing Down

Vol 4613 September 2009/dol:10.1038/nature08227

nature

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Power systems are constantly "bumped" by randomness

Statistics can be useful indicators

Cotilla-Sanchez, Hines, Danforth, IEEE Trans Smart Grid, 2012. See also:

DeMarco and Berge, IEEE Trans on Ckt & Sys, 1987.

Dhople, Chen, DeVille, Domínguez-García, IEEE Trans on Ckt Sys, 2013

Podolsky and Turitsyn, arXiv:1307.4318, Jul. 2013.

Susuki and Mezic, IEEE Trans. Power Syst., 2012 (and others)

How can we find the useful* statistical early warning signs?

*Useful: A sign that shows up early enough that we might actually be able to do something about it, even if there is measurement noise

Model a power grid using stochastic differential equations

 $\underline{\dot{x}} = f\left(\underline{x}, y\right)$

 $0 = g\left(\underline{x}, y, \underline{u}\right)$

Differential equations. (swing eqs., governors, exciters, etc.)

Algebraic equations

r.v. for stochastic load perturbations

 $\underline{\dot{u}} = -\underbrace{E}_{\mu} + \underbrace{C}_{\xi}$ Loads modeled as Ornstein– Uhlenbeck process

Ind. Gaussian r.v.s, 1% std. dev.

Encodes corr. time of load fluctuations

And solve to find the variance and autocorrelation of voltages and currents

$A\sigma_{\underline{z}} + \sigma_{\underline{z}}A^{T} = -BB^{T} \text{ Lyapanov eq.}$ $E\left[\underline{z}\left(t\right)\underline{z}^{T}\left(s\right)\right] = \exp\left[-A|t-s|\right]\sigma_{\underline{z}}$

and choose a time delay for autocorrelation measurements

Check to make sure that the analytical and numerical line up

And add measurement noise

Which we can subsequently filter to largely regain our original signal, with the interesting side-effect that some of the variance now appears as autocorrelation.

At key locations, we can see clear signs of instability in Autocorrelation and Variance

How do we measure "detectability" to distinguish useful statistical signals from non-useful ones?

Which statistics provide useful (detectable) early warning?

Variance of voltages

Why is variance in voltage useful?

Autocorrelation of currents

Can we use these signals to build a control system?

A (simple) control system

Apply to 39 bus test case

Statistical feedback allows us to make better control decisions relative to voltage-mangitude-based control

In summary

- Autocorrelation and variance are, sometimes, useful indicators of proximity to instability.
- Variances of voltages near loads are consistently good indicators of proximity to voltage collapse, even when voltage magnitudes are not.
- Autocorrelations of currents near generators (particularly smaller ones) are generally good indicators of system-wide stability issues (e.g., inter-area oscillations—Hopf bifurcation)
- These statistics can be used to design statistical control systems that can improve voltage stability.

Early warning signs of instability in the statistical properties of PMU data

NASPI October Working Group Meeting Seattle, October 2016

Paul Hines* Samuel Chevalier, Konstantin Turitsyn, Goodarz Ghanavati, Taras Lakoba, *To whom all blame is due

Funding gratefully acknowledged: NSF Awards ECCS-1254549, DGE-1144388, DOE Award DE-OE0000447

NY city, Nov. 9, 1965 © Bob Gomel, Life