WISER: Waveform Instrument for Synchronized Environmental Recording

Sean McDaniel, Ph.D.

Peter Weed

Executive Summary

WISER: Research tool for (power) system analysis

- Low-cost, robust, easily-modified platform that will be easy to install, and will record high-bandwidth, full-waveform data
- Suggested applications: identification and diagnosis of grid events, model verification of grid assets, etc.
- Key technologies have been demonstrated in a lab environment
- Addresses key challenges in distributed environmental monitoring
 - Flexibility: Developing new platforms for different monitoring environments is high cost and high effort
 - AC mains monitoring: Modern, AC-mains (household) monitoring hardware is variously limited
 - Time-domain analysis: Low-bandwidth, phasor data restricts analysis methods
 - *Costs*: High costs limit density and deployment of conventional PMUs

Challenges

Challenges and solutions in distributed environmental monitoring

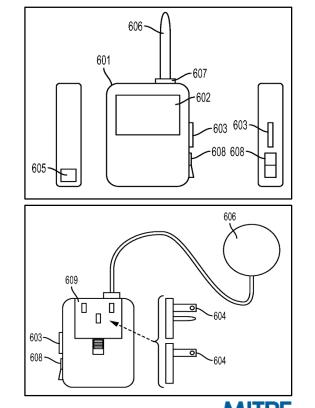
3

Challenge #1: Flexibility

- PROBLEM: Developing new platforms for different monitoring environments is high cost and high effort
 - Current method: different environment → different hardware → multiplied development times and costs
 - Unmonitored environments impede comprehensive generation-to-consumption insight
- SOLUTION: Create a single, easily-modified platform
 - Simple, compact, and robust hardware core will be common to all instantiations
 - External interface can be easily modified to suit instrumentation needs
 Upper: Public domain

Middle: Lic. <u>cc-by-sa-3.0</u>. No changes. User 'Dingy' Lower: Lic. <u>cc-by-sa-3.0</u>. No changes. Copyright "Siemens Pressebild", obtained with the friendly permission of Siemens Germany by Christian Kuhna.

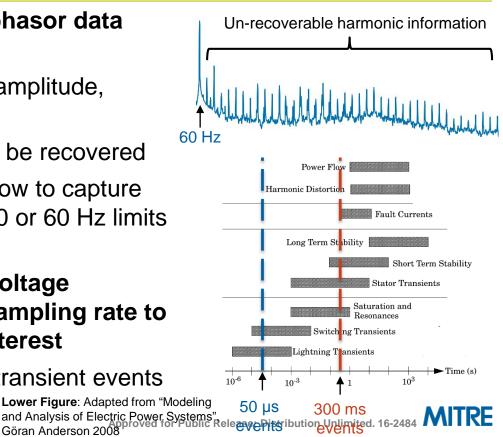
Approved for Public Release; Distribution Unlimited. 16-2484 MITRE



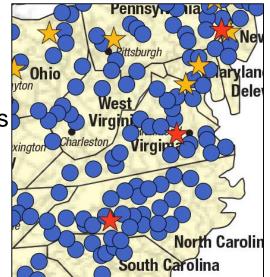
Challenge #2: AC Mains Monitoring

- PROBLEM: Modern, AC-mains (household) monitoring hardware is variously limited
 - Current equipment can be bulky, difficult to install, or record heavily-filtered data
- <u>SOLUTION</u>: Create a compact, easy to install, simple to operate, waveform monitor
 - Plugs into standard NEMA receptacles
 - Interchangeable power plugs
 - Small, compact form (deck of cards)

Left (top): Front view of a possible WISER prototype form. From patent submission application number 14621136 (McDaniel, Weed 2016)


Left (bottom): Back view of a possible WISER prototype form. Interchangeable plugs and alternative GPS antenna type are shown.

Challenge #3: Time-domain Analysis


Göran Anderson 2008

- **PROBLEM:** Low-bandwidth, phasor data restricts analysis methods
 - PMUs typically track phase, amplitude, angle of 60 Hz fundamental
 - Harmonic information cannot be recovered
 - Data reporting rates are too low to capture important transient events: 10 or 60 Hz limits detection from 300 to 50 ms
- SOLUTION: Capture the full-voltage waveform at a high-enough sampling rate to capture transient events of interest
 - At 64 ksps \rightarrow capture 50 µs transient events

Challenge #4: Costs

- PROBLEM: High costs limit density and deployment of conventional PMUs
 - Three drivers of high costs (\$40k \$180k per unit)¹: hardware, installation, and communications
 - Present device density and dispersion in VA:
 1 PMU per 2100 sq. mi. (22 total)
- <u>SOLUTION</u>: Reduce hardware, communications, and installation costs through intelligent design
 - Hardware: cost < \$400 per unit

- Communications: Large local storage reduces communications burden
- Installation: Intentionally simple operation—turn on and leave

1 – US DOE "Factors Affecting PMU Installation Costs" (2014)

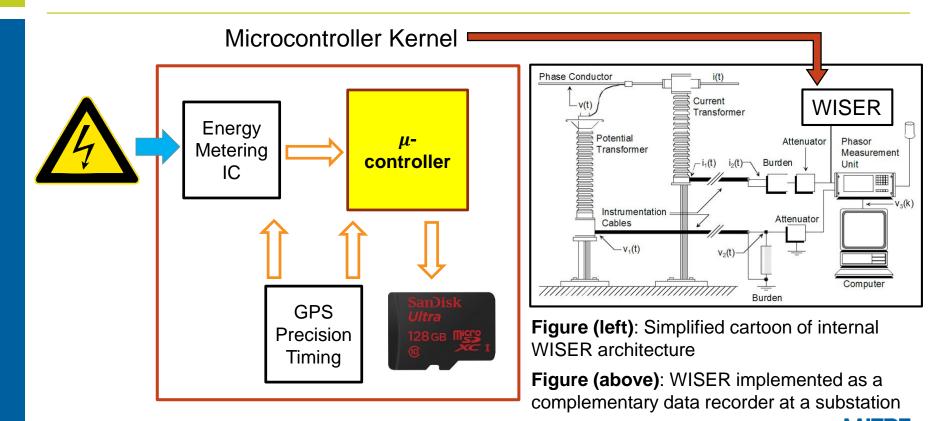
© 2016 The MITRE Corporation. All rights reserved.

Figure adapted from published image "March 2015 PMU Locations" by North American SyncroPhasor Institute, 2015 Approved for Public Release; Distribution Unlimited. 16-2484

WISER

Hardware overview and applications

© 2016 The MITRE Corporation. All rights reserved.


8

WISER Overview

 WISER is not a synchrophasor replacement, it's designed to be a research tool.

- GPS-synchronized, full waveform, voltage recorder with a micro-processor driven core
- High sampling rate goal ($f_s \approx 64 \ ksps$)
- Large, local storage on micro-SD card
- Low unit cost (per unit < \$400)
- Low-power goal (< 1W)
- Flexible hardware design that is easily adaptable to any environment
- Easy installation for AC mains receptacles

WISER DAQ Overview

Power Industry Applications

Research tool for power system analysis

- **1.** Identification and diagnosis of grid events
 - Expand possible analysis techniques using waveform data
 - Perform transient analysis using high-sampling-rate data
- 2. Model verification of grid assets
- 3. AC-mains receptacle monitor
- 4. Synchrophasor supplement
- 5. Increase sensor density and coverage
 - At medium/high voltage nodes ($V_{RMS} > 2 \text{ kV}$)
 - At low voltage nodes ($V_{\rm RMS} \approx 120/240 \, {\rm kV}$)

Development Status and Roadmap

Breadboard Prototype

- Sampling rate: 4 ksps
- Real AC waveform capture
- Stream to disk (μ-SD)
- GPS time-tagged data

Fieldable Prototype

- Sampling rate: 64 ksps
- Coupling to systems of interest
 - Long-term stability

Advanced Prototype

- Polyphase waveform capture
- Current capture
- Power subsystem (battery backup)
- Network connectivity

Current status: breadboard prototype

Future development to be driven by government and industry concerns

Approved for Public Release; Distribution Unlimited. 16-2484 MITRE

Summary

- WISER is a GPS-synchronized, high-sampling-rate, voltage waveform recorder
- WISER was designed to solve four challenges
 - Flexibility: Create a single, easily-modified platform for all measurement situations and voltage levels
 - AC mains monitoring: Create a compact, easy to install, trivial to operate, waveform monitor that can plug into any common AC receptacle
 - Time-domain analysis: Open up new, exciting time-domain analyses, particularly for transients
 - Costs: Reduce high hardware, communications, and installation costs
- Key technologies have been proven in a lab environment