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Motivation: PMU Data Quality Problems

( Current Practice ) ( Critical Needs )

‘4 N\ ‘ N\

€ PMU-based decision
making tools require
accurate PMU data for
reliable analysis.

©) Urgent need to develop
scalable, real-time methods
to monitor and improve
PMU data quality.

€ PMU data has higher
sampling rate and
accuracy requirement.

© cConventional bad data

@ Typical PMU bad data detection algorithms are
ratio in California ISO rendered ineffective, novel
ranges from 10% to 17% algorithms are needed.
(in 2011) [1].
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Current Approaches for PMU Bad Data Detection

Model-Based Approach /4

O PMU-based state estimator [2]. |
O Kalman-filter-based approach [3].

O Require system parameter and topology information.
O Require converged state estimation results.

Data-Driven Approach 74 <

0 Low-rank matrix factorization for PMU bad data detection [4].
0 Pre-defined logics & thresholds for bad data detection [5].
0 Matrix factorization involves high computational burden.

0 Robustness of pre-defined logics under eventful conditions.
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[2] S. Ghiocel,J. Chow, et al. “Phasor-measurement-based state estimation for synchrophasor data quality
improvement and power transfer interface monitoring”.
[3] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing synchrophasor data conditioning and validation”. 4
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Overview of The Proposed Approach [6]

Problem Formulation

O Study spatio-temporal correlations among good / eventful / bad PMU data.

O Formulate bad PMU data as spatio-temporal outliers among other data.

O Apply density-based outlier detection technique to detect bad PMU data.

Key Advantages:

O Online bad data detection.

O Fast without convergence issues.
O Data-driven algorithm.
O

Operate under both normal and fault-on
operating conditions.
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Detect Various Types of Bad Data:

High communication noise.

Missing data (communication loss).
Data spikes (gross error / GPS error).
Un-updated data.

Cyber attacks (false data injection).

T

* [6] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven

Approach. IEEE Transactions on Power Systems. Accepted, to appear
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Good Data VS Eventful Data VS Bad Data

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event
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Good Data VS Eventful Data VS Bad Data
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Features of Good / Eventful / Bad Data

Criteria: Good Data VS Eventful Data VS Bad Data

€ Good Data: strong spatio-temporal correlations with its
neighbors.

€ Eventful Data: weak temporal but strong spatial correlations
with its neighbors.

€ Bad Data: weak spatio-temporal correlations with its neighbors.
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Example of Spatio-Temporal Correlations
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Quantification of Spatio-Temporal Correlations [6]

Definition of Normalized
Standard Deviation

= Normalized standard deviation:

Norm Ui(k)
&; (k) = —F—
Z:=L;_¢:(t}xc(ﬂﬁ(ﬂ}

oy Xxc(M:(t))

(My(t) € C)

1
xc(M;(t}) = { 0 (M(t) ¢C)

» Explanation:

v' Standard deviation of PMU curve
obtained from it" PMU channel at
k" time window, normalized by the
average standard deviation of the
historical clean data of the same
PMU channel.

Spatio-Temporal Correlation
Metrics (Distance Function)

» For high-variance bad data:
fH('f:,j) . |J;*\"arm B g;‘_"-"orm

v' High-variance bad data: data
spikes, data loss, high noise,
false data injections, etc.

= For low-variance bad data:

Norm JNGTW
i

ET;' orm |’ Ulg"'-a arm
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fu(i.j) = maz

v Low-variance bad data:
un-updated data, etc.
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Online Detection of Low-Quality PMU Data [7]

Spatio-Temporal Correlation | i Density-Based
Metrics (Distance Function) i | Local QOutlier Detection
= For high-variance bad data: = Local Reachability Density:
; . . . lrd)finpis(p) =
f (1 j‘) givorm g;- orm 1 Eaeﬁﬁmnpes{p] reach — distyrinpts(p, 0)
_ _ i | |Natinpts(p)]
v High-variance bad data: data
Apiles, ekl mss el = Local Outlier Factor [12]:

Z . ( Irdpinpis(0)
0ENMinPts(P) lrdprinpis(p)
LOFyfinpts(p) =

(p)

:I false data injections, etc.

= For low-variance bad data:

g!"* arm Jf‘f orm

1.7) = maz | |- = .
fL(i. j) g Norm || Norm = Bad Data Detection:

v Low-variance bad data: v' LOF(p) >> 1: p contains bad data.

un-updated data, etc.

v LOF(p) = 1: p contains good data only.

« [7] Breunig, Markus M., et al. "LOF: identifying density-based local outliers." ACM sigmod record. Vol. 29. No. 2. ACM, 2000. 12




Online Detection of Low-Quality PMU Data [6]

Implementation Flowchart , N
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Numerical Results — High Sensing Noise

Synchrophasor Measurements with Gaussian Noises

Synchrophasor Channel No. 10
Synchrophasor Channel No. 15
Synchrophasor Channel No. 23
Synchrophasor Channel No. 29

Data with
1.02F Gaussian Noises

Test Case Description
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curves.
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Numerical Results — Data Spikes

Synchrophasor Measurements with Spikes
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Numerical Results — False Data Injection Attacks

Test Case Description

39 real-world PMU voltage magnitude data
curves.

PMU No. 14, 18, 24, 37 contain false data
injections lasting from 1s to 1.2s.

Line tripping fault is presented around 4s.

Numerical Results Description

All the 4 false data injections are detected.

System event does not cause false alarms.

Detection delay is less than 0.19s.

Computation time for each data window is
0.040s.

Synchrophasor Measurements with Cyber Attacks
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Numerical Results — Un-updated Data

Test Case Description

13 real-world PMU current magnitude data
curves.

PMU No. 1, 5, 7, 13 contain un-updated data
lasting from 1s to 1.2s.

Line tripping fault is presented around 4s.

Numerical Results Description

All the 4 bad data segments are detected.
System event does not cause false alarms.
Detection delay is less than 0.18s.

Computation time for each data window is
0.0115s.
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Numerical Results — Different Similarity Metrics

f(1.2) between Synchrophasor
Channel No. 1 and Mo. 2

Similarity Metric for High-Variance Bad Data
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Numerical Results — Different Similarity Metrics
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Real-Time Detection of Low-Quality PMU Data

¥ Conclusions ¢

An approach for PMU low-quality data detection is proposed:

Q Itis purely data-driven, without involving any knowledge on network
parameters or topology, which avoids the impact of incorrect
parameter/topology information on the identification results.

It encounters no convergence issues and has fast computation performance,
which is desirable for online application.

It is suitable for identifying low-quality data in PMU outputs under both
normal and eventful operating conditions.

Future Work 8

Identify the root cause of the low-quality PMU data.

Propose correction mechanism for the low-quality PMU data. @ TEXAS A::M
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