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Current Practice Critical Needs

Urgent need to develop 

scalable, real-time methods 

to monitor and improve 

PMU data quality.

Conventional bad data 

detection algorithms are 

rendered ineffective, novel 

algorithms are needed.

 PMU-based decision 

making tools require

accurate PMU data for 

reliable analysis.

 PMU data has higher 

sampling rate and 

accuracy requirement.

 Typical PMU bad data 

ratio in California ISO 

ranges from 10% to 17% 

(in 2011) [1].

Motivation: PMU Data Quality Problems

• [1] California ISO, “Five year synchrophasor plan,” California ISO, Tech. Rep., Nov 2011.



Current Approaches for PMU Bad Data Detection
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 PMU-based state estimator [2].

 Kalman-filter-based approach [3].

 Require system parameter and topology information.

 Require converged state estimation results.

 Low-rank matrix factorization for PMU bad data detection [4].

 Pre-defined logics & thresholds for bad data detection [5].

 Matrix factorization involves high computational burden.

 Robustness of pre-defined logics under eventful conditions.

[2] S. Ghiocel, J. Chow, et al. “Phasor-measurement-based state estimation for synchrophasor data quality 

improvement and power transfer interface monitoring”.

[3] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing synchrophasor data conditioning and validation”.

[4] M. Wang, J. Chow, et al. “A low-rank matrix approach for the analysis of large amounts of power system synchrophasor data”.

[5] K. Martin, “Synchrophasor data diagnostics: detection & resolution of data problems for operations and analysis”.
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Overview of The Proposed Approach [6]

Online PMU Bad Data Detection Algorithm

Problem Formulation

 Study spatio-temporal correlations among good / eventful / bad PMU data.

 Formulate bad PMU data as spatio-temporal outliers among other data.

 Apply density-based outlier detection technique to detect bad PMU data.

• [6] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven 

Approach. IEEE Transactions on Power Systems. Accepted, to appear.
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Good Data VS Eventful Data VS Bad Data

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event
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Good Data VS Eventful Data VS Bad Data
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Features of Good / Eventful / Bad Data

PMU Bad Data: 

Spatio-Temporal 

Outlier

Criteria: Good Data VS Eventful Data VS Bad Data

 Good Data: strong spatio-temporal correlations with its 

neighbors.

 Eventful Data: weak temporal but strong spatial correlations 

with its neighbors.

 Bad Data: weak spatio-temporal correlations with its neighbors.



Example of Spatio-Temporal Correlations
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 8 PMU curves

 3 time windows

 2 instants / window

Map 3×8 Curves To 

2D Euclidian Space

 8 green points 

(normal window)

 8 blue points 

(fault-on window)

 8 red points 

(low-quality window)

 2 red outliers

(low-quality data)
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Quantification of Spatio-Temporal Correlations [6]
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Definition of Normalized 

Standard Deviation

 Normalized standard deviation:

 Explanation:

Spatio-Temporal Correlation 

Metrics (Distance Function)

 Standard deviation of PMU curve 

obtained from 𝒊𝒕𝒉 PMU channel at 

𝒌𝒕𝒉 time window, normalized by the 

average standard deviation of the 

historical clean data of the same 

PMU channel.

 For high-variance bad data:

 For low-variance bad data:

 Low-variance bad data: 

un-updated data, etc.

 High-variance bad data: data 

spikes, data loss, high noise, 

false data injections, etc.

• [6] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven 

Approach. IEEE Transactions on Power Systems. Accepted, to appear.



Online Detection of Low-Quality PMU Data [7]
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Spatio-Temporal Correlation 

Metrics (Distance Function)

 For high-variance bad data:

 For low-variance bad data:

Density-Based 

Local Outlier Detection

 Local Outlier Factor [12]:

 Local Reachability Density:

 Bad Data Detection:

 LOF(p) >> 1: p contains bad data.

 LOF(p) ≈ 1: p contains good data only.

 Low-variance bad data: 

un-updated data, etc.

 High-variance bad data: data 

spikes, data loss, high noise, 

false data injections, etc.

• [7] Breunig, Markus M., et al. "LOF: identifying density-based local outliers." ACM sigmod record. Vol. 29. No. 2. ACM, 2000.



Online Detection of Low-Quality PMU Data [6]
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• [6] M. Wu, and Le Xie. Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven 

Approach. IEEE Transactions on Power Systems. Accepted, to appear.
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Numerical Results – High Sensing Noise
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Test Case Description

• 39 real-world PMU voltage magnitude data 

curves.

• PMU No. 10, 15, 23, 29 contain Gaussian 

noises (SNR = 40 db) lasting from 1s to 

1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.19s.

• Computation time for each data window is 

0.0376s.



Numerical Results – Data Spikes
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Test Case Description

• 22 real-world PMU real power data curves.

• PMU No. 10, 13, 16, 21 contain data spikes 

lasting from 1.05s to 1.1s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 

0.0197s.



Numerical Results – False Data Injection Attacks
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Test Case Description

• 39 real-world PMU voltage magnitude data 

curves.

• PMU No. 14, 18, 24, 37 contain false data 

injections lasting from 1s to 1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 false data injections are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.19s.

• Computation time for each data window is 

0.040s.



Numerical Results – Un-updated Data
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Test Case Description

• 13 real-world PMU current magnitude data 

curves.

• PMU No. 1, 5, 7, 13 contain un-updated data 

lasting from 1s to 1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 

0.0115s.
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Numerical Results – Different Similarity Metrics
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Similarity Metric for High-Variance Bad Data

Similarity Metric for Low-Variance Bad Data

Performance Difference

• 𝒇𝑯 𝒊, 𝒋 is more sensitive to high-variance 

bad data.

• 𝒇𝑳(𝒊, 𝒋) is more sensitive to low-variance 

bad data.



Numerical Results – Different Similarity Metrics
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 LOF indicator based on 𝒇𝑯(𝒊, 𝒋) is more sensitive to high-variance 

bad data.

 LOF indicator based on 𝒇𝑳 𝒊, 𝒋 is more sensitive to low-variance 

bad data.
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Real-Time Detection of Low-Quality PMU Data

Conclusions

An approach for PMU low-quality data detection is proposed:

 It is purely data-driven, without involving any knowledge on network 

parameters or topology, which avoids the impact of incorrect 

parameter/topology information on the identification results.

 It encounters no convergence issues and has fast computation performance, 

which is desirable for online application.

 It is suitable for identifying low-quality data in PMU outputs under both 

normal and eventful operating conditions.

Future Work

 Identify the root cause of the low-quality PMU data.

 Propose correction mechanism for the low-quality PMU data.
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